Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(19): 13236-13246, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38701635

RESUMEN

Fluids under extreme confinement show characteristics significantly different from those of their bulk counterpart. This work focuses on water confined within the complex cavities of highly hydrophobic metal-organic frameworks (MOFs) at high pressures. A combination of high-pressure intrusion-extrusion experiments with molecular dynamic simulations and synchrotron data reveals that supercritical transition for MOF-confined water takes place at a much lower temperature than in bulk water, ∼250 K below the reference values. This large shifting of the critical temperature (Tc) is attributed to the very large density of confined water vapor in the peculiar geometry and chemistry of the cavities of Cu2tebpz (tebpz = 3,3',5,5'-tetraethyl-4,4'-bipyrazolate) hydrophobic MOF. This is the first time the shift of Tc is investigated for water confined within highly hydrophobic nanoporous materials, which explains why such a large reduction of the critical temperature was never reported before, neither experimentally nor computationally.

2.
Molecules ; 29(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38675666

RESUMEN

In this study, a series of four surface-active compounds-N-alkyl betaine ethyl ester chlorides, CnBetC2Cl-were synthesized and characterized in aqueous solutions. As with other alkyl betaines, these amphiphiles can be practically used, for example, as co-surfactants and/or solubility enhancers acting according to hydrotropic or micellar mechanisms, depending on the alkyl chain length in the amine. We focused on the representatives of the medium alkyl chain length (C6-C12) to find the dependence between the alkyl chain length in N-alkyl betaine ethyl ester chlorides and the surface, volumetric, acoustic, and viscometric properties of their solutions. Ethyl esters, the derivatives of amino acids, were chosen to increase functionality and take advantage of possible hydrolysis in solutions at higher pH, which is also a key parameter in biodegradability. The micellization parameters were calculated based on the physicochemical characteristics. We focused our interest on the ester with a dodecyl substituent since we can compare and discuss its properties with some other C12 representatives that are available in literature. Surprisingly, its micellization characteristic is almost temperature-independent in the investigated temperature range, t = (15-45) °C. Particularly interesting are the results of dynamic light scattering (DLS), which show that the changes in physicochemical parameters of the C12 homolog around the CMC are caused by the two types of micelles of different sizes present in solutions.

3.
Chem Commun (Camb) ; 58(93): 13015-13018, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36341972

RESUMEN

In this paper, efficient MMA photo O-ATRP protocols conducted inside nanoreactors varying in nanostructured interfaces are reported for the first time. We showed that the microstructure of recovered polymers could be easily tuned just by implementing a given type of nanochannel (d = 10, 19-28, 35, 160 nm).

4.
J Phys Chem B ; 125(30): 8502-8510, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34297553

RESUMEN

This study explores the transport properties of bis(trifluoromethylsulfonyl)imide-based ionic liquids with a naturally derived (1R,2S,5R)-(-)-menthol moiety in the cationic part. In particular, we investigated the dependence of the dynamic viscosity and electrical conductivity as functions of the alkyl chain length. An important finding of this study is that both properties show nonmonotonic behavior with respect to the alkyl chain length. The nonmonotonic dependency is an obstacle for establishing the relationships between the structure and transport properties of homologues. To overcome this difficulty, we recommend fast property screening using a theoretical model that we developed, which allows for efficient viscosity prediction by means of the group contribution method. As demonstrated in this study, the model allows for reliable predictions of viscosity in the studied series with an overall relative deviation of less than 8%.

5.
J Phys Chem Lett ; 12(20): 4951-4957, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34009998

RESUMEN

Negative compressibility (NC) is a phenomenon when an object expands/shrinks in at least one of its dimensions upon compression/decompression. NC is very rare and is of great interest for a number of applications. In this work a gigantic (more than one order of magnitude higher compared to the reported values) NC effect was recorded during intrusion-extrusion of a non-wetting liquid into a flexible porous structure. For this purpose, in situ high-pressure neutron scattering, intrusion-extrusion experiments, and DFT calculations were applied to a system consisting of water and a highly hydrophobic Cu2(tebpz) metal-organic framework (MOF), which upon water penetration expands in a and c directions to demonstrate NC coefficients more than order of magnitude higher compared to the highest values ever reported. The proposed approach is not limited to the materials used in this work and can be applied to achieve coefficients of negative linear compressibility of more than 103 TPa-1.

6.
Langmuir ; 37(16): 4827-4835, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33844556

RESUMEN

On-demand access to renewable and environmentally friendly energy sources is critical to address current and future energy needs. To achieve this, the development of new mechanisms of efficient thermal energy storage (TES) is important to improve the overall energy storage capacity. Demonstrated here is the ideal concept that the thermal effect of developing a solid-liquid interface between a non-wetting liquid and hydrophobic nanoporous material can store heat to supplement current TES technologies. The fundamental macroscopic property of a liquid's surface entropy and its relationship to its solid surface are one of the keys to predict the magnitude of the thermal effect by the development of the liquid-solid interface in a nanoscale environment-driven through applied pressure. Demonstrated here is this correlation of these properties with the direct measurement of the thermal effect of non-wetting liquids intruding into hydrophobic nanoporous materials. It is shown that the model can resonably predict the heat of intrusion into rigid mesoporous silica and some microporous zeolite when the temperature dependence of the contact angle is applied. Conversely, intrusion into flexible microporous metal-organic frameworks requires further improvement. The reported results with further development have the potential to lead to the development of a new supplementary method and mechanim for TES.

7.
J Chem Phys ; 154(6): 064701, 2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33588559

RESUMEN

Herein, we examined the effect of finite size and wettability on the structural dynamics and the molecular arrangement of the propylene carbonate derivative, (S)-(-)-4-methoxymethyl-1,3-dioxolan-2-one (assigned as s-methoxy-PC), incorporated into alumina and silica porous templates of pore diameters d = 4 nm-10 nm using Raman and broadband dielectric spectroscopy, differential scanning calorimetry, and x-ray diffraction. It was demonstrated that only subtle changes in the molecular organization and short-range order of confined s-methoxy-PC molecules were detected. Yet, a significant deviation of the structural dynamics and depression of the glass transition temperatures, Tg, was found for all confined samples with respect to the bulk material. Interestingly, these changes correlate with neither the finite size effects nor the interfacial energy but seem to vary with wettability, generally. Nevertheless, for s-methoxy-PC infiltrated into native (more hydrophilic) and modified (more hydrophobic) silica templates of the same nanochannel size (d = 4 nm), a change in the dynamics and Tg was negligible despite a significant variation in wettability. These results indicated that although wettability might be a suitable variable to predict alteration of the structural dynamics and depression of the glass transition temperature, other factors, i.e., surface roughness and the density packing, might also have a strong contribution to the observed confinement effects.

8.
J Colloid Interface Sci ; 576: 217-229, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32417683

RESUMEN

In this paper, the molecular dynamics, H-bonding pattern and wettability of the primary and secondary monohydroxyalcohols, 2-ethyl-1-hexanol (2E1H), 2-ethyl-1-butanol (2E1B) and 5-methyl-3-heptanol (5M3H) infiltrated into native and functionalized silica and alumina pores having pore diameters, d = 4 nm and d = 10 nm, have been studied with the use of Broadband Dielectric (BDS) and Fourier Transform InfraRed (FTIR) spectroscopies, as well as contact angle measurements. We found significant differences in the behavior of alcohols forming chain- (2E1H, 2E1B) or micelle-like (5M3H) supramolecular structures despite of their similarities in the wettability and interfacial energy. It turned out that nanoassociates as well as H-bonds are more or less affected by the confinement dependently on the chemical structure and alcohol order. Moreover, a peculiar behavior of the self-assemblies at the interface was noted in the latter material (5M3H). Finally, it was found that irrespectively to the sample, type of pores, functionalization, the temperature evolution of Debye relaxation times, τD, of the confined systems deviates from the bulk behavior always at similar τD due to vitrification of the interfacial layer. This finding is a clear indication that unexpectedly dynamics (mobility) of the supramolecular structures close to the hydrophilic and hydrophobic surfaces is similar in each system.

9.
Materials (Basel) ; 12(22)2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31731826

RESUMEN

The synthesis of more than 10 new magnetic ionic liquids with [MnX4]2- anions, X = Cl, NCS, NCO, is presented. Detailed structural information through single-crystal X-ray diffraction is given for (DMDIm)[Mn(NCS)4], (BnEt3N)2[Mn(NCS)4], and {(Ph3P)2N}2[Mn(NCO4)]·0.6H2O, respectively. All compounds consist of discrete anions and cations with tetrahedrally coordinated Mn (II) atoms. They show paramagnetic behavior as expected for spin-only systems. Melting points are found for several systems below 100 °C classifying them as ionic liquids. Thermal properties are investigated using differential scanning calorimetry (DSC) measurements. The physicochemical properties of density, dynamic viscosity, electrolytic conductivity, and surface tension were measured temperature-dependent of selected samples. These properties are discussed in comparison to similar Co containing systems. An increasing amount of bromide impurity is found to affect the surface tension only up to 3.3%.

10.
Chem Commun (Camb) ; 55(45): 6441-6444, 2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-31098603

RESUMEN

We report, for the first time, the metal-free green synthesis of linear poly(vinyl pyrrolidone) (PVP) homopolymers of molecular weight higher than 100 kg mol-1 and narrow dispersities via thermal and photo-induced free radical polymerisation carried out within alumina nanoporous membranes acting as "nanoreactors".

11.
Chem Rev ; 117(5): 3883-3929, 2017 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-28177233

RESUMEN

A complete review of the literature data on the speed of sound and ultrasound absorption in pure ionic liquids (ILs) is presented. Apart of the analysis of data published to date, the significance of the speed of sound in ILs is regarded. An analysis of experimental methods described in the literature to determine the speed of sound in ILs as a function of temperature and pressure is reported, and the relevance of ultrasound absorption in acoustic investigations is discussed. Careful attention was paid to highlight possible artifacts, and side phenomena related to the absorption and relaxation present in such measurements. Then, an overview of existing data is depicted to describe the temperature and pressure dependences on the speed of sound in ILs, as well as the impact of impurities in ILs on this property. A relation between ions structure and speeds of sound is presented by highlighting existing correlation and evaluative methods described in the literature. Importantly, a critical analysis of speeds of sound in ILs vs those in classical molecular solvents is presented to compare these two classes of compounds. The last part presents the importance of acoustic investigations for chemical engineering design and possible industrial applications of ILs.

12.
J Phys Chem B ; 117(14): 3867-76, 2013 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-23510074

RESUMEN

Acoustic properties of three (1-ethyl-, 1-butyl-, and 1-octyl-) 1-alkyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] imide room-temperature ionic liquids are reported and discussed. The speeds of sound in RTILs were measured as a function of temperature in the range 288-323 K by means of a sing around method. The densities and isobaric heat capacities were determined from 288.15 to 363.15 K and from 293.15 to 323.15 K, respectively. The related properties, like isentropic and isothermal compressibilities, isobaric coefficients of thermal expansion, molar isochoric heat capacities, and internal pressures, were calculated. It was found that for some ionic liquids, temperature dependence of isobaric coefficients of thermal expansion is small and negative. All investigations were completed by the ultrasound absorption coefficient measurements in 1-ethyl- and 1-octyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] imide as a function of frequency from 10 to 300 MHz at temperatures 293.15-298.15 K. The ultrasound absorption spectra indicate relaxation frequencies in the megahertz range.

13.
Phys Chem Chem Phys ; 13(31): 14064-75, 2011 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-21666914

RESUMEN

Potential applications of ionic liquids depend on the properties of this class of liquid material. To a large extent the structure and properties of these Coulomb systems are determined by the intermolecular interactions among anions and cations. In particular the subtle balance between Coulomb forces, hydrogen bonds and dispersion forces is of great importance for the understanding of ionic liquids. The purpose of the present paper is to answer three questions: Do hydrogen bonds exist in these Coulomb fluids? To what extent do hydrogen bonds contribute to the overall interaction between anions and cations? And finally, are hydrogen bonds important for the physical properties of ionic liquids? All these questions are addressed by using a suitable combination of experimental and theoretical methods including newly synthesized imidazolium-based ionic liquids, far infrared spectroscopy, terahertz spectroscopy, DFT calculations, differential scanning calorimetry (DSC), viscometry and quartz-crystal-microbalance measurements. The key statement is that although ionic liquids consist solely of anions and cations and Coulomb forces are the dominating interaction, local and directional interaction such as hydrogen bonding has significant influence on the structure and properties of ionic liquids. This is demonstrated for the case of melting points, viscosities and enthalpies of vaporization. As a consequence, a variety of important properties can be tuned towards a larger working temperature range, finally expanding the range of potential applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA