Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Bioengineering (Basel) ; 10(10)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37892857

RESUMEN

Quercetin is a polyphenol of the flavonoid class of secondary metabolites that is widely distributed in the plant kingdom. Quercetin has been found to exhibit potent bioactivity in the areas of wound healing, neuroprotection, and anti-aging research. Naturally found in highly glycosylated forms, aglycone quercetin has low solubility in aqueous environments, which has heavily limited its clinical applications. To improve the stability and bioavailability of quercetin, efforts have been made to chemically modify quercetin and related flavonoids so as to improve aqueous solubility while retaining bioactivity. In this review, we provide an updated overview of the biological properties of quercetin and proposed mechanisms of actions in the context of wound healing and aging. We also provide a description of recent developments in synthetic approaches to improve the solubility and stability of quercetin and related analogs for therapeutic applications. Further research in these areas is expected to enable translational applications to improve ocular wound healing and tissue repair.

2.
Int J Mol Sci ; 24(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37894801

RESUMEN

The administration of therapeutic drugs through dermal routes, such as creams and ointments, has emerged as an increasingly popular alternative to traditional delivery methods, such as tablets and injections. In the context of drug development, it is crucial to identify the optimal doses and delivery routes that ensure successful outcomes. Physiologically based pharmacokinetic (PBPK) models have been proposed to simulate drug delivery and optimize drug formulations, but the calibration of these models is challenging due to the multitude of variables involved and limited experimental data. One significant research gap that this article addresses is the need for more efficient and accurate methods for calibrating PBPK models for dermal drug delivery. This manuscript presents a novel approach and an integrated dermal drug delivery model to address this gap that leverages virtual in vitro release (IVRT) and permeation (IVPT) testing data to optimize mechanistic models. The proposed approach was demonstrated through a study involving Desoximetasone cream and ointment formulations, where the release kinetics and permeation profiles of Desoximetasone were determined experimentally, and a computational model was created to simulate the results. The experimental studies showed that, even though the cumulative permeation of Desoximetasone at the end of the permeation study was comparable, there was a significant difference seen in the lag time in the permeation of Desoximetasone between the cream and ointment. Additionally, there was a significant difference seen in the amount of Desoximetasone permeated through human cadaver skin at early time points when the cream and ointment were compared. The computational model was optimized and validated, suggesting that this approach has the potential to bridge the existing research gap by improving the accuracy and efficiency of drug development processes. The model results show a good fit between the experimental data and model predictions. During the model optimization process, it became evident that there was variability in both the permeability and the partition coefficient within the stratum corneum. This variability had a significant and noteworthy influence on the overall performance of the model, especially when it came to its capacity to differentiate between cream and ointment formulations. Leveraging virtual models significantly aids the comprehension of drug release and permeation, mitigating the demanding data requirements. The use of virtual IVRT and IVPT data can accelerate the calibration of PBPK models, streamline the selection of the appropriate doses, and optimize drug delivery. Moreover, this novel approach could potentially reduce the time and resources involved in drug development, thus making it more cost-effective and efficient.


Asunto(s)
Desoximetasona , Piel , Humanos , Pomadas/farmacología , Piel/metabolismo , Absorción Cutánea , Simulación por Computador , Administración Cutánea
3.
Pharm Res ; 40(4): 961-975, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36959411

RESUMEN

INTRODUCTION: Although the eye is directly accessible on the surface of the human body, drug delivery can be extremely challenging due to the presence of multiple protective barriers in eye tissues. Researchers have developed complex formulation strategies to overcome these barriers to ophthalmic drug delivery. Current development strategies rely heavily on in vitro experiments and animal testing to predict human pharmacokinetics (PK) and pharmacodynamics (PD). OBJECTIVE: The primary objective of the study was to develop a high-fidelity PK/PD model of the anterior eye for topical application of ophthalmic drug products. METHODS: Here, we present a physiologically-based in silico approach to predicting PK and PD in rabbits after topical administration of ophthalmic products. A first-principles based approach was used to describe timolol dissolution, transport, and distribution, including consideration of ionized transport, following topical instillation of a timolol suspension. RESULTS: Using literature transport and response parameters, the computational model described well the concentration-time and response-time profiles in rabbit. Comparison of validated rabbit model results and extrapolated human model results demonstrate observable differences in the distribution of timolol at multiple time points. CONCLUSION: This modeling framework provides a tool for model-based prediction of PK in eye tissues and PD after topical ophthalmic drug administration to the eyes.


Asunto(s)
Ojo , Timolol , Animales , Humanos , Conejos , Timolol/farmacocinética , Soluciones Oftálmicas/farmacocinética , Córnea , Administración Tópica
4.
Pharm Res ; 40(3): 735-747, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35174431

RESUMEN

PURPOSE: To investigate in vitro transdermal delivery of tofacitinib citrate across human skin using microporation by microneedles and iontophoresis alone and in combination. METHODS: In vitro permeation studies were conducted using vertical Franz diffusion cells. Microneedles composed of polyvinyl alcohol and carboxymethyl cellulose were fabricated and successfully characterized using scanning electron microscopy. The microchannels created were further characterized using histology, dye binding study, scanning electron microscopy, and confocal microscopy studies. The effect of microporation on delivery of tofacitinib citrate was evaluated alone and in combination with iontophoresis. In addition, the effect of current density on iontophoretic delivery was also investigated. RESULTS: Total delivery of tofacitinib citrate via passive permeation was found out to be 11.04 ± 1 µg/sq.cm. Microporation with microneedles resulted in significant enhancement where a 28-fold increase in delivery of tofacitinib citrate was observed with a total delivery of 314.7±33.32 µg/sq.cm. The characterization studies confirmed the formation of microchannels in the skin where successful disruption of stratum corneum was observed after applying microneedles. Anodal iontophoresis at 0.1 and 0.5 mA/sq.cm showed a total delivery of 18.56 µg/sq.cm and 62.07 µg/sq.cm, respectively. A combination of microneedle and iontophoresis at 0.5 mA/sq.cm showed the highest total delivery of 566.59 µg/sq.cm demonstrating a synergistic effect. A sharp increase in transdermal flux was observed for a combination of microneedles and iontophoresis. CONCLUSION: This study demonstrates the use of microneedles and iontophoresis to deliver a therapeutic dose of tofacitinib citrate via transdermal route.


Asunto(s)
Iontoforesis , Absorción Cutánea , Humanos , Iontoforesis/métodos , Sistemas de Liberación de Medicamentos/métodos , Piel/metabolismo , Administración Cutánea
5.
Nat Biomed Eng ; 6(4): 351-371, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35478225

RESUMEN

Engineered tissues can be used to model human pathophysiology and test the efficacy and safety of drugs. Yet, to model whole-body physiology and systemic diseases, engineered tissues with preserved phenotypes need to physiologically communicate. Here we report the development and applicability of a tissue-chip system in which matured human heart, liver, bone and skin tissue niches are linked by recirculating vascular flow to allow for the recapitulation of interdependent organ functions. Each tissue is cultured in its own optimized environment and is separated from the common vascular flow by a selectively permeable endothelial barrier. The interlinked tissues maintained their molecular, structural and functional phenotypes over 4 weeks of culture, recapitulated the pharmacokinetic and pharmacodynamic profiles of doxorubicin in humans, allowed for the identification of early miRNA biomarkers of cardiotoxicity, and increased the predictive values of clinically observed miRNA responses relative to tissues cultured in isolation and to fluidically interlinked tissues in the absence of endothelial barriers. Vascularly linked and phenotypically stable matured human tissues may facilitate the clinical applicability of tissue chips.


Asunto(s)
Hígado , MicroARNs , Corazón , Piel
6.
Int J Pharm ; 618: 121693, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35331833

RESUMEN

Psoriasis is a condition of the skin which involves scales, dry patches, and inflammation. Methotrexate (logP: -1.8, MW:454.44 g/mol) is administered orally or intravenously to treat psoriasis. The first-pass metabolism and systemic toxicity can be avoided by administration via skin. Topical and transdermal delivery of methotrexate using iontophoresis and microneedles, alone and in combination was investigated using full-thickness healthy human skin. It is also equally relevant to evaluate the delivery into and across damaged/diseased skin. Hence, this study investigated the delivery of methotrexate using ex vivo healthy and psoriatic human skin to understand the effect of skin disease condition on delivery of methotrexate via skin. A lower resistance and a higher TEWL for psoriatic skin indicated damaged barrier function, while histology studies indicated epithelial hyperproliferation and elongated rete ridges. Using the optimized iontophoretic parameters, there was no significant difference in receptor delivery for psoriatic skin (39.51 ± 4.45 µg/sq.cm) as compared to healthy skin (43.15 ± 0.83 µg/sq.cm). However, methotrexate delivery into psoriatic skin (126.23 ± 24.65 µg/sq.cm) was significantly higher as compared to healthy skin (12.02 ± 4.89 µg/sq.cm). Thus, significantly higher total delivery was observed from psoriatic skin than healthy skin.


Asunto(s)
Iontoforesis , Psoriasis , Administración Cutánea , Humanos , Metotrexato , Psoriasis/tratamiento farmacológico , Piel/metabolismo
7.
Eur J Pharm Sci ; 167: 105924, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34289340

RESUMEN

The delivery of therapeutic drugs through the skin is a promising alternative to oral or parenteral delivery routes because dermal drug delivery systems (D3Ss) offer unique advantages, such as controlled drug release over sustained periods and a significant reduction in first-pass effects, thus reducing the required dosing frequency and the level of patient noncompliance. Furthermore, D3Ss find applications in multiple therapeutic areas, including drug repurposing. This article presents an integrated biophysical model of dermal absorption for simulating the permeation and absorption of compounds delivered transdermally. The biophysical model is physiologically/biologically inspired and combines a holistic model of healthy skin with whole-body physiology-based pharmacokinetics through the dermis microcirculation. The model also includes the effects of chemical penetration enhancers and hair follicles on transdermal transport. The model-predicted permeation and pharmacokinetics of select compounds were validated using in vivo data reported in the literature. We conjecture that the integrated model can be used to gather insights into the permeation and systemic absorption of transdermal formulations (including cosmetic products) released from novel depots and to optimize delivery systems. Furthermore, the model can be extended to diseased skin with parametrization and structural adjustments specific to skin diseases.


Asunto(s)
Absorción Cutánea , Piel , Administración Cutánea , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Humanos , Piel/metabolismo
8.
J Pharmacokinet Pharmacodyn ; 46(6): 513-529, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31396799

RESUMEN

The primary goal of this work was to develop a computational tool to enable personalized prediction of pharmacological disposition and associated responses for opioids and antidotes. Here we present a computational framework for physiologically-based pharmacokinetic (PBPK) modeling of an opioid (morphine) and an antidote (naloxone). At present, the model is solely personalized according to an individual's mass. These PK models are integrated with a minimal pharmacodynamic model of respiratory depression induction (associated with opioid administration) and reversal (associated with antidote administration). The model was developed and validated on human data for IV administration of morphine and naloxone. The model can be further extended to consider different routes of administration, as well as to study different combinations of opioid receptor agonists and antagonists. This work provides the framework for a tool that could be used in model-based management of pain, pharmacological treatment of opioid addiction, appropriate use of antidotes for opioid overdose and evaluation of abuse deterrent formulations.


Asunto(s)
Analgésicos Opioides/efectos adversos , Analgésicos Opioides/farmacocinética , Antídotos/efectos adversos , Antídotos/farmacocinética , Analgésicos Opioides/administración & dosificación , Antídotos/administración & dosificación , Humanos , Masculino , Morfina/efectos adversos , Morfina/farmacocinética , Naloxona/administración & dosificación , Naloxona/efectos adversos , Naloxona/farmacocinética , Antagonistas de Narcóticos/administración & dosificación , Antagonistas de Narcóticos/efectos adversos , Antagonistas de Narcóticos/farmacocinética , Trastornos Relacionados con Opioides/tratamiento farmacológico , Dolor/tratamiento farmacológico , Receptores Opioides/metabolismo
9.
J Appl Toxicol ; 39(3): 461-472, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30307041

RESUMEN

Recent advances in developing in vitro tissue models show that function of hepatocytes is altered in when cultured in 3D configuration and co-culturing with various non-parenchymal cells. However, tissue source for such non-parenchymal cells on viability and metabolic products of hepatocytes have not been explored. In this study, we evaluated the effect of 2D and 3D cultures either with HepaRG cells alone or in combination with liver sinusoidal endothelial cells (LSECs) and human umbilical vein ECs (HUVECs). For 3D cultures, we used chitosan-gelatin porous structures formed by freeze-drying. We cultured cells for 8 days before challenging with 1 mm acetaminophen (APAP) and assessed APAP, APAP-sulfate and APAP-glucuronide for 24 hours at 6-hour time intervals using high-performance liquid chromatography. We used multiple methods (phase contrast, confocal and scanning electron microscopy and histology via hematoxylin and eosin staining) to ensure cell distribution. We also measured total protein content and albumin secretion and viability. HUVEC 3D co-cultures showed the lowest HepaRG cell viability, while both 2D and 3D LSEC co-cultures had highest HepaRG cell viability. In addition, 3D cultures had significantly higher EC viability relative to 2D cultures. Further, HUVEC co-cultures showed reduced total protein content and albumin expression as early as day 4. However, urea production on a total protein content basis did not change. In addition, LSEC 3D co-cultures had the highest APAP conversion with reduced APAP-sulfate and APAP-glucuronide formation. CYP3A4 was higher in co-culture with HUVEC for 2D and 3D cultures. In conclusion, HepaRG cells with EC co-cultures demonstrated sensitivity to the EC line used.


Asunto(s)
Acetaminofén/metabolismo , Células Endoteliales/fisiología , Hepatocitos/metabolismo , Supervivencia Celular , Células Cultivadas , Técnicas de Cocultivo , Citocromo P-450 CYP3A/metabolismo , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos , Proteínas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA