RESUMEN
The status of sentinel lymph nodes (SLNs) has a substantial prognostic value because these nodes are the first place where cancer cells accumulate along their spreading route. Routine SLN biopsy ("gold standard") involves peritumoral injections of radiopharmaceuticals, such as technetium-99m, which has obvious disadvantages. This review examines the methods used as "gold standard" analogs to diagnose SLNs. Nonradioactive preoperative and intraoperative methods of SLN detection are analyzed. Promising photonic tools for SLNs detection are reviewed, including NIR-I/NIR-II fluorescence imaging, photoswitching dyes for SLN detection, in vivo photoacoustic detection, imaging and biopsy of SLNs. Also are discussed methods of SLN detection by magnetic resonance imaging, ultrasonic imaging systems including as combined with photoacoustic imaging, and methods based on the magnetometer-aided detection of superparamagnetic nanoparticles. The advantages and disadvantages of nonradioactive SLN-detection methods are shown. The review concludes with prospects for the use of conservative diagnostic methods in combination with photonic tools.
Asunto(s)
Ganglio Linfático Centinela , Colorantes , Medios de Contraste , Humanos , Verde de Indocianina , Ganglios Linfáticos/diagnóstico por imagen , Metástasis Linfática , Ganglio Linfático Centinela/diagnóstico por imagen , Biopsia del Ganglio Linfático Centinela , Agregado de Albúmina Marcado con Tecnecio Tc 99mRESUMEN
Many nanomedicine approaches are struggling to reach high enough effectiveness in delivery if applied systemically. The perspective is sought to explore the clinical practices currently used for localized treatment. In this study, we combine in vivo targeting of carriers sensitive to the external magnetic field with clinically used endovascular delivery to specific site. Fluorescent micron-size capsules made of biodegradable polymers and containing magnetite nanoparticles incorporated in the capsule wall were explored in vivo using Near-Infrared Fluorescence Live Imaging for Real-Time. Comparison of systemic (intravenous) and directed (intra-arterial) administration of the magnetic microcapsule targeting in the hindpaw vessels demonstrated that using femoral artery injection in combination with magnetic field exposure is 4 times more efficient than tail vein injection. Thus, endovascular targeting significantly improves the capabilities of nanoengineered drug delivery systems reducing the systemic side effects of therapy.
Asunto(s)
Nanopartículas de Magnetita/química , Nanomedicina/métodos , Animales , Cápsulas/química , Sistemas de Liberación de Medicamentos/métodos , Humanos , Polímeros/químicaRESUMEN
Although new drug delivery systems have been intensely developed in the past decade, no significant increase in the efficiency of drug delivery by nanostructure carriers has been achieved. The reasons are the lack of information about acute toxicity, the influence of the submicron size of the carrier and difficulties with the study of biodistribution in vivo. Here we propose, for the first time in vivo, new nanocomposite submicron carriers made of bovine serum albumin (BSA) and tannic acid (TA) and containing magnetite nanoparticles with sufficient content for navigation in a magnetic field gradient on mice. We examined the efficacy of these submicron carriers as a delivery vehicle in combination with magnetite nanoparticles which were systemically administered intravenously. In addition, the systemic toxicity of this carrier for intravenous administration was explicitly studied. The results showed that (BSA/TA) carriers in the given doses were hemocompatible and didn't cause any adverse effect on the respiratory system, kidney or liver functions. A combination of gradient-magnetic-field controllable biodistribution of submicron carriers with fluorescence tomography/MRI imaging in vivo provides a new opportunity to improve drug delivery efficiency.
RESUMEN
Targeted cell delivery via magnetically sensitive microcapsules of an applied magnetic field would advance localized cell transplantation therapy, by which healthy cells can be introduced into tissues to repair damaged or diseased organs. In the present research, we implement magnetically sensitive cells via an uptake of microcapsules containing magnetic nanoparticles in their walls. As is shown in an example of the MA-104 cell line, the magnetic polyelectrolyte multilayer capsules have no toxicity effect on the cells after internalization. Microscopy methods have been used to evaluate the uptake of capsules by the cells. Magnetically sensitive cells are retained in the capillary flow when the magnetic gradient field is applied (<200 T m-1), but they proliferate at the site of retention for several days after the magnet is removed. As an example of cell manipulation, we have demonstrated a novel methodology for cell sheet isolation and transfer using cells impregnated with magnetic microcapsules. A weak enzyme treatment is used to facilitate tissue engineering assemblies by cell monolayer deposition. This type of cell monolayer assembly has provided a 3D tissue engineering construction using an externally applied magnetic field, which is modelled in this study. The approach presented in this work opens perspectives for preclinical studies of tissue and organ repair.
Asunto(s)
Nanopartículas de Magnetita/química , Nanocompuestos/química , Animales , Cápsulas/química , Adhesión Celular , Línea Celular , Proliferación Celular , Chlorocebus aethiops , Fenómenos ElectromagnéticosRESUMEN
Microcapsules, made of biodegradable polymers, containing magnetite nanoparticles with tunable contrast in both the T1 and T2 MRI modes, were successfully prepared using a layer-by-layer approach. The MRI contrast of the microcapsules was shown to depend on the distance between magnetite nanoparticles in the polymeric layers, which is controlled by their concentration in the microcapsule shell. A fivefold increase in the average distance between the nanoparticles in the microcapsule shell led to a change in the intensity of the MR signal of 100% for both the T1 and T2 modes. Enzyme treatment of biodegradable shells resulted in a change of the microcapsules' MRI contrast. In vivo degradation of nanocomposite microcapsules concentrated in the liver after intravenous injection was demonstrated by MRI. This method can be used for the creation of a new generation of drug delivery systems, including drug depot, with combined navigation, visualization and remote activated release of bioactive substances in vivo.