Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Stroke ; 53(11): 3455-3464, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36168130

RESUMEN

BACKGROUND: Ischemic stroke affects about 700 000 patients per year in the United States, and to date, there are no effective pharmacological agents that promote recovery. Here, we studied the pharmacokinetics, pharmacodynamics, and efficacy of NTS-105, a novel neuroactive steroid, and NTS-104, a prodrug of NTS-105, in 2 models of ischemic stroke. METHODS: The pharmacodynamics and pharmacokinetics of NTS-104/105 were investigated in naive and stroke rats, and models of embolic and transient middle cerebral artery occlusion were used to investigate the dose-related effects of NTS-104. All rats were randomly assigned into the experimental groups, and all outcome measurements were performed blindly. RESULTS: Blood plasma and brain pharmacokinetic analysis revealed that NTS-104 rapidly converted to NTS-105, which reached peak concentration at ≈1 hour after dosing and distributed similarly to normal and ischemic brains. NTS-104 administration 4 hours after embolic middle cerebral artery occlusion led to a dose-dependent improvement of neurological outcomes and a dose-dependent reduction of infarct volumes relative to vehicle-treated animals. A single dose level study confirmed that NTS-104 administered 4 hours after transient middle cerebral artery occlusion was also neuroprotective. Quantitative ELISA revealed that NTS-104 treatment resulted in time- and dose-dependent changes in AKT activation and cytokine levels within the ischemic brain, which included reductions of IL-6, VEGF, ICAM-1, IL-1ß, MCP-1, RAGE, and GM-CSF. Time- and dose-dependent reductions in IL-6 and GM-CSF were also observed in the plasma along with an elevation of galectin-1. CONCLUSIONS: NTS-104 is a novel prodrug that converts to a novel neuroactive steroid, NTS-105, which improves functional outcomes in experimental ischemic stroke models.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Neuroesteroides , Profármacos , Accidente Cerebrovascular , Animales , Ratas , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Isquemia Encefálica/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Profármacos/farmacología , Profármacos/uso terapéutico , Molécula 1 de Adhesión Intercelular/uso terapéutico , Galectina 1/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Interleucina-6 , Proteínas Proto-Oncogénicas c-akt , Factor A de Crecimiento Endotelial Vascular/uso terapéutico , Modelos Animales de Enfermedad , Accidente Cerebrovascular/tratamiento farmacológico
2.
J Vis Exp ; (148)2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31282886

RESUMEN

The lateral fluid percussion injury (FPI) model is well established and has been used to study TBI and post-traumatic epilepsy (PTE). However, considerable variability has been reported for the specific parameters used in different studies that have employed this model, making it difficult to harmonize and interpret the results between laboratories. For example, variability has been reported regarding the size and location of the craniectomy, how the Luer lock hub is placed relative to the craniectomy, the atmospheric pressure applied to the dura and the duration of the pressure pulse. Each of these parameters can impact injury severity, which directly correlates with the incidence of PTE. This has been manifested as a wide range of mortality rates, righting reflex times and incidence of convulsive seizures reported. Here we provide a detailed protocol for the method we have used to help facilitate harmonization between studies. We used FPI in combination with a wireless EEG telemetry system to continuously monitor for electrographic changes and detect seizure activity.  FPI is induced by creating a 5 mm craniectomy over the left hemisphere, between the Bregma and Lambda and adjacent to the lateral ridge. A Luer lock hub is secured onto the skull over the craniectomy. This hub is connected to the FPI device, and a 20-millisecond pressure pulse is delivered directly to the intact dura through pressure tubing connected to the hub via a twist lock connector. Following recovery, rats are re-anesthetized to remove the hub. Five 0.5 mm, stainless steel EEG electrode screws are placed in contact with the dura through the skull and serve as four recording electrodes and one reference electrode. The electrode wires are collected into a pedestal connector which is secured into place with bone cement. Continuous video/EEG recordings are collected for up to 4 weeks post TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/fisiopatología , Electroencefalografía/métodos , Epilepsia Postraumática/fisiopatología , Percusión/efectos adversos , Telemetría/métodos , Animales , Modelos Animales de Enfermedad , Electroencefalografía/instrumentación , Masculino , Percusión/métodos , Ratas , Telemetría/instrumentación , Grabación en Video
3.
Neuropharmacology ; 118: 69-78, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28267583

RESUMEN

The neuropeptide S system has been implicated in a number of centrally mediated behaviors including memory consolidation, anxiolysis, and increased locomotor activity. Characterization of these behaviors has been primarily accomplished using the endogenous 20AA peptide (NPS) that demonstrates relatively equal potency for the calcium mobilization and cAMP second messenger pathways at human and rodent NPS receptors. This study is the first to demonstrate that truncations of the NPS peptide provides small fragments that retain significant potency only at one of two single polymorphism variants known to alter NPSR function (NPSR-107I), yet demonstrate a strong level of bias for the calcium mobilization pathway over the cAMP pathway. We have also determined that the length of the truncated peptide correlates with the degree of bias for the calcium mobilization pathway. A modified tetrapeptide analog (4) has greatly attenuated hyperlocomotor stimulation in vivo but retains activity in assays that correlate with memory consolidation and anxiolytic activity. Analog 4 also has a bias for the calcium mobilization pathway, at the human and mouse receptor. This suggests that future agonist ligands for the NPS receptor having a bias for calcium mobilization over cAMP production will function as non-stimulatory anxiolytics that augment memory formation.


Asunto(s)
Ansiolíticos/farmacología , Locomoción/efectos de los fármacos , Memoria/efectos de los fármacos , Neuropéptidos/farmacología , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Adaptación Ocular/efectos de los fármacos , Análisis de Varianza , Animales , Reacción de Prevención/efectos de los fármacos , Calcio/metabolismo , AMP Cíclico/metabolismo , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Neuropéptidos/química , Receptores Acoplados a Proteínas G/genética , Transfección , alfa-Fetoproteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA