Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
2.
Biophys J ; 119(1): 15-23, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32544387

RESUMEN

Magnetic tweezers based on a solenoid with an iron alloy core are widely used to apply large forces (∼100 nN) onto micron-sized (∼5 µm) superparamagnetic particles for mechanical manipulation or microrheological measurements at the cellular and molecular level. The precision of magnetic tweezers, however, is limited by the magnetic hysteresis of the core material, especially for time-varying force protocols. Here, we eliminate magnetic hysteresis by a feedback control of the magnetic induction, which we measure with a Hall sensor mounted to the distal end of the solenoid core. We find that the generated force depends on the induction according to a power-law relationship and on the bead-tip distance according to a stretched exponential relationship. Combined, they describe with only three parameters the induction-force-distance relationship, enabling accurate force calibration and force feedback. We apply our method to measure the force dependence of the viscoelastic and plastic properties of fibroblasts using a protocol with stepwise increasing and decreasing forces. We group the measured cells in a soft and a stiff cohort and find that softer cells show an increasing stiffness but decreasing plasticity with higher forces, indicating a pronounced stress stiffening of the cytoskeleton. By contrast, stiffer cells show no stress stiffening but an increasing plasticity with higher forces. These findings indicate profound differences between soft and stiff cells regarding their protection mechanisms against external mechanical stress. In summary, our method increases the precision, simplifies the handling, and extends the applicability of magnetic tweezers.


Asunto(s)
Fenómenos Magnéticos , Magnetismo , Calibración , Retroalimentación , Pinzas Ópticas , Estrés Mecánico
3.
PLoS One ; 10(11): e0142490, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26559528

RESUMEN

Excitable media such as the myocardium or the brain consist of arrays of coupled excitable elements, in which the local excitation of a single element can propagate to its neighbors in the form of a non-linear autowave. Since each element has to pass through a refractory period immediately after excitation, the frequency of autowaves is self-limiting. In this work, we consider the case where each element is spontaneously excited at a fixed average rate and thereby initiates a new autowave. Although these spontaneous self-excitation events are modelled as independent Poisson point processes with exponentially distributed waiting times, the travelling autowaves lead collectively to a non-exponential, unimodal waiting time distribution for the individual elements. With increasing system size, a global 'clock' period T emerges as the most probable waiting time for each element, which fluctuates around T with an increasingly small but non-zero variance. This apparent synchronization between asynchronous, temporally uncorrelated point processes differs from synchronization effects between perfect oscillators interacting in a phase-aligning manner. Finally, we demonstrate that asynchronous local clocks also emerge in non-homogeneous systems in which the rates of self-excitation are different for all individuals, suggesting that this novel mechanism can occur in a wide range of excitable media.


Asunto(s)
Relojes Biológicos/fisiología , Encéfalo/fisiología , Corazón/fisiología , Humanos , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA