Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Front Med (Lausanne) ; 9: 910176, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36111122

RESUMEN

The global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has put an enormous pressure on human societies, at both health and economic levels. Early diagnosis of SARS-CoV-2, the causative agent of 2019 coronavirus disease (COVID-19), has proved an efficient method to rapidly isolate positive individuals and reduce transmission rates, thus alleviating its negative impact on society's well-being and economic growth. In this work, through a coordinated and centralized effort to monitor SARS-CoV-2 circulation in companies from the State of Rio de Janeiro, Brazil, we have detected and linked an early rise of infection rates in January 2022 to the introduction of the Omicron variant of concern (VoC) (BA.1). Interestingly, when the Omicron genomic isolates were compared to correlates from public datasets, it was revealed that introduction events were multiple, with possible migration routes mapping to: Mali; Oman and United States; and Italy, Latin America, and United States. In addition, we have built a haplotype network with our genomic dataset and found no strong evidence of transmission chains, between and within companies. Considering Omicron's particularly high transmissibility, and that most of our samples (>87%) arose from 3 out of 10 companies, these findings suggest that workers from such environments were exposed to SARS-CoV-2 outside their company boundaries. Thus, using a mixed strategy in which quick molecular diagnosis finds support in comprehensive genomic analysis, we have shown that a successfully implemented occupational health program should contribute to document emerging VoC and to limit the spread of SARS-CoV-2 at the workplace.

2.
Front Microbiol ; 12: 711107, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34394061

RESUMEN

Traditional methods of vector control have proven insufficient to reduce the alarming incidence of dengue, Zika, and chikungunya in endemic countries. The bacterium symbiont Wolbachia has emerged as an efficient pathogen-blocking and self-dispersing agent that reduces the vectorial potential of Aedes aegypti populations and potentially impairs arboviral disease transmission. In this work, we report the results of a large-scale Wolbachia intervention in Ilha do Governador, Rio de Janeiro, Brazil. wMel-infected adults were released across residential areas between August 2017 and March 2020. Over 131 weeks, including release and post-release phases, we monitored the wMel prevalence in field specimens and analyzed introgression profiles of two assigned intervention areas, RJ1 and RJ2. Our results revealed that wMel successfully invaded both areas, reaching overall infection rates of 50-70% in RJ1 and 30-60% in RJ2 by the end of the monitoring period. At the neighborhood-level, wMel introgression was heterogeneous in both RJ1 and RJ2, with some profiles sustaining a consistent increase in infection rates and others failing to elicit the same. Correlation analysis revealed a weak overall association between RJ1 and RJ2 (r = 0.2849, p = 0.0236), and an association at a higher degree when comparing different deployment strategies, vehicle or backpack-assisted, within RJ1 (r = 0.4676, p < 0.0001) or RJ2 (r = 0.6263, p < 0.0001). The frequency knockdown resistance (kdr) alleles in wMel-infected specimens from both areas were consistently high over this study. Altogether, these findings corroborate that wMel can be successfully deployed at large-scale as part of vector control intervention strategies and provide the basis for imminent disease impact studies in Southeastern Brazil.

3.
Sci Rep ; 11(1): 10039, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976301

RESUMEN

Field release of Wolbachia-infected Aedes aegypti has emerged as a promising solution to manage the transmission of dengue, Zika and chikungunya in endemic areas across the globe. Through an efficient self-dispersing mechanism, and the ability to induce virus-blocking properties, Wolbachia offers an unmatched potential to gradually modify wild Ae. aegypti populations turning them unsuitable disease vectors. Here we describe a proof-of-concept field trial carried out in a small community of Niterói, greater Rio de Janeiro, Brazil. Following the release of Wolbachia-infected eggs, we report here a successful invasion and long-term establishment of the bacterium across the territory, as denoted by stable high-infection indexes (> 80%). We have also demonstrated that refractoriness to dengue and Zika viruses, either thorough oral-feeding or intra-thoracic saliva challenging assays, was maintained over the adaptation to the natural environment of Southeastern Brazil. These findings further support Wolbachia's ability to invade local Ae. aegypti populations and impair disease transmission, and will pave the way for future epidemiological and economic impact assessments.


Asunto(s)
Aedes/virología , Arbovirus/fisiología , Mosquitos Vectores/virología , Control Biológico de Vectores/estadística & datos numéricos , Wolbachia , Animales , Brasil , Virus del Dengue/aislamiento & purificación , Femenino , Control Biológico de Vectores/métodos , Virus Zika/aislamiento & purificación
4.
Parasit Vectors ; 12(1): 211, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-31060581

RESUMEN

BACKGROUND: Aedes aegypti is a major disease vector in urban habitats, involved in the transmission of dengue, chikungunya and Zika. Despite innumerous attempts to contain disease outbreaks, there are neither efficient vaccines nor definite vector control methods nowadays. In recent years, an innovative strategy to control arboviruses, which exploits the endosymbiotic bacterium Wolbachia pipientis, emerged with great expectations. The success of the method depends on many aspects, including Wolbachia's cytoplasmic incompatibility and pathogen interference phenotypes, as well as its effect on host fitness. In this work, we investigated the influence the Wolbachia strain wMel exerts on embryo development and egg viability and speculate on its field release use. METHODS: Wild-type (Br or Rockefeller) and Wolbachia-harboring specimens (wMelBr) were blood-fed and submitted to synchronous egg laying for embryo development assays. Samples were analyzed for morphological markers, developmental endpoint and egg resistance to desiccation (ERD). Quiescent egg viability over time was also assessed. RESULTS: wMelBr samples completed embryogenesis 2-3 hours later than wild-type. This delay was also observed through the onset of both morphological and physiological markers, respectively by the moments of germband extension and ERD acquisition. Following the end of embryonic development, wMelBr eggs were slightly less resistant to desiccation and showed reduced viability levels, which rapidly decayed after 40 days into quiescence, from approximately 75% to virtually 0% in less than a month. CONCLUSIONS: Our data revealed that the wMel strain of Wolbachia slightly delays embryogenesis and also affects egg quality, both through reduced viability and desiccation resistance. These findings suggest that, although embryonic fitness is somehow compromised by wMel infection, an efficient host reproductive manipulation through cytoplasmic incompatibility seems sufficient to overcome these effects in nature and promote bacterial invasion, as shown by successful ongoing field implementation.


Asunto(s)
Aedes/microbiología , Mosquitos Vectores/microbiología , Óvulo/crecimiento & desarrollo , Aedes/embriología , Animales , Supervivencia Celular , Desarrollo Embrionario , Femenino , Humanos , Masculino , Wolbachia/fisiología
5.
Parasit Vectors ; 11(1): 109, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29471864

RESUMEN

BACKGROUND: Mosquito-borne diseases are rapidly spreading to vast territories, putting at risk most of the world's population. A key player in this scenario is Aedes aegypti, a hematophagous species which hosts and transmits viruses causing dengue and other serious illnesses. Since vector control strategies relying only on insecticides have proven unsustainable, an alternative method involving the release of Wolbachia-harboring individuals has emerged. Its successful implementation vastly depends on how fit the released individuals are in the natural habitat, being able to mate with wild populations and to spread Wolbachia to subsequent generations. In mosquitoes, an important aspect of reproductive fitness is the acoustic communication between males and females, which translates to interactions between harmonic frequencies in close proximity flight. This study aimed to characterize the flight tone produced by individuals harboring Wolbachia, also evaluating their ability to establish stable acoustic interactions. METHODS: Wild-type (WT) and Wolbachia-harboring specimens (wMelBr) were thorax-tethered to blunt copper wires and placed at close proximity to sensitive microphones. Wing-beat frequencies (WBFs) were characterized at fundamental and harmonic levels, for both single individuals and couples. Harmonic interactions in homogeneous and heterogeneous couples of WT and wMelBr variants were identified, categorized and quantified accordingly. RESULTS: In tethered 'solo' flights, individuals harboring Wolbachia developed WBFs, differing slightly, in a sex-dependent way, from those of the WT strain. To test the ability to form harmonic 'duets', tethered couples of wMelBr and WT individuals were shuffled in different sex pairs and had their flight tones analyzed. All couple types, with WT and/or wMelBr individuals, were able to interact acoustically in the frequency range of 1300-1500 Hz, which translates to the convergence between male's second harmonic and female's third. No significant differences were found in the proportions of interacting couples between the pair types. Surprisingly, spectrograms also revealed the convergence between alternative harmonic frequencies, inside and outside the species putative hearing threshold. CONCLUSIONS: Wolbachia infection leads to small sex-dependent changes on the flight tones of Ae. aegypti, but it does not seem to prevent the stereotyped harmonic interaction between males and females. Therefore, when released in the natural habitat to breed with native individuals, Wolbachia-harboring individuals shall be fit enough to meet the criteria of acoustically-related mating behavior and promote bacteria dispersion effectively.


Asunto(s)
Aedes/fisiología , Comunicación Animal , Mosquitos Vectores/fisiología , Conducta Sexual Animal , Wolbachia/fisiología , Aedes/microbiología , Animales , Femenino , Aptitud Genética , Masculino , Control de Mosquitos , Mosquitos Vectores/microbiología
6.
Parasit Vectors ; 8: 505, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26438221

RESUMEN

BACKGROUND: Behavior rhythms of insect vectors directly interfere with the dynamics of pathogen transmission to humans. The sand fly Lutzomyia longipalpis is the main vector of visceral leishmaniasis in America and concentrates its activity around dusk. Despite the accumulation of behavioral data, very little is known about the molecular bases of the clock mechanism in this species. This study aims to characterize, within an evolutionary perspective, two important circadian clock genes, Clock and vrille. FINDINGS: We have cloned and isolated the coding sequence of L. longipalpis' genes Clock and vrille. The former is structured in eight exons and encodes a protein of 696 amino acids, and the latter comprises three exons and translates to a protein of 469 amino acids. When compared to other insects' orthologues, L. longipalpis CLOCK shows a high degree of conservation in the functional domains bHLH and PAS, but a much shorter glutamine-rich (poly-Q) C-terminal region. As for L. longipalpis VRILLE, a high degree of conservation was found in the bZIP domain. To support these observations and provide an elegant view of the evolution of both genes in insects, phylogenetic analyses based on maximum-likelihood and Bayesian inferences were performed, corroborating the previously known insect systematics. CONCLUSIONS: The isolation and phylogenetic analyses of Clock and vrille orthologues in L. longipalpis bring novel and important data to characterize this species' circadian clock. Interestingly, the poly-Q shortening observed in CLOCK suggests that its transcription activity might be impaired and we speculate if this effect could be compensated by other clock factors such as CYCLE.


Asunto(s)
Conducta Animal/fisiología , Proteínas CLOCK/metabolismo , Regulación de la Expresión Génica/fisiología , Psychodidae/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas CLOCK/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Filogenia , Psychodidae/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA