Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Neurology ; 100(15): 727-731, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36564204

RESUMEN

Nonhepatic hyperammonemia syndrome is a rare cause of neurologic dysfunction and cerebral edema and has most commonly been reported in posttransplant patients. Only recently has opportunistic infection with Ureaplasma species and Mycoplasma hominis been found to be key to the pathogenesis. We describe the cases of 3 immunosuppressed patients who developed hyperammonemia syndrome with new-onset refractory status epilepticus and diffuse cerebral edema. PCR was positive for M hominis in 1 patient and Ureaplasma parvum in the other 2. Despite early diagnostic suspicion and aggressive management with empirical antibiotics, seizure control, hypertonic saline, and ammonia elimination, none of our patients survived this life-threatening infection. Nonhepatic hyperammonemia and new-onset seizures can be presenting features of disseminated Ureaplasma species and M hominis infections in posttransplant patients. Immunosuppression in the absence of organ transplantation is likely sufficient to trigger this entity, as was the case in our third patient. When suspected, empiric combination antibiotics should be used due to high likelihood of resistance. The diagnostic test of choice is PCR. Patients with hyperammonemia syndrome associated with these infections typically have a poor prognosis. Early recognition and aggressive multimodal interventions may be key to ameliorating the high mortality and severe neurologic sequelae from this entity.


Asunto(s)
Edema Encefálico , Hiperamonemia , Mycoplasma , Estado Epiléptico , Humanos , Ureaplasma , Edema Encefálico/terapia , Edema Encefálico/complicaciones , Hiperamonemia/complicaciones , Hiperamonemia/terapia , Antibacterianos/uso terapéutico , Estado Epiléptico/terapia , Estado Epiléptico/complicaciones
2.
Sci Rep ; 12(1): 19622, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36380004

RESUMEN

Urinary tract infections (UTIs) are common and frequently precipitate delirium-like states. Advanced age coincident with the postmenopausal period is a risk factor for delirium following UTIs. We previously demonstrated a pathological role for interleukin-6 (IL-6) in mediating delirium-like phenotypes in a murine model of UTI. Estrogen has been implicated in reducing peripheral IL-6 expression, but it is unknown whether the increased susceptibility of postmenopausal females to developing delirium concomitant with UTIs reflects diminished effects of circulating estrogen. Here, we tested this hypothesis in a mouse model of UTI. Female C57BL/6J mice were oophorectomized, UTIs induced by transurethral inoculation of E. coli, and treated with 17ß-estradiol. Delirium-like behaviors were evaluated prior to and following UTI and 17ß-estradiol treatment. Compared to controls, mice treated with 17ß-estradiol had less neuronal injury, improved delirium-like behaviors, and less plasma and frontal cortex IL-6. In vitro studies further showed that 17ß-estradiol may also directly mediate neuronal protection, suggesting pleiotropic mechanisms of 17ß-estradiol-mediated neuroprotection. In summary, we demonstrate a beneficial role for 17ß-estradiol in ameliorating acute UTI-induced structural and functional delirium-like phenotypes. These findings provide pre-clinical justification for 17ß-estradiol as a therapeutic target to ameliorate delirium following UTI.


Asunto(s)
Delirio , Infecciones Urinarias , Ratones , Femenino , Animales , Escherichia coli , Modelos Animales de Enfermedad , Interleucina-6 , Ratones Endogámicos C57BL , Estradiol/farmacología , Infecciones Urinarias/tratamiento farmacológico , Estrógenos/farmacología , Fenotipo , Delirio/tratamiento farmacológico
3.
Crit Care ; 26(1): 274, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36100846

RESUMEN

Acute neuropsychiatric impairments occur in over 70% of patients with acute lung injury. Mechanical ventilation is a well-known precipitant of acute lung injury and is strongly associated with the development of acute delirium and anxiety phenotypes. In prior studies, we demonstrated that IL-6 mediates neuropathological changes in the frontal cortex and hippocampus of animals with mechanical ventilation-induced brain injury; however, the effect of systemic IL-6 inhibition on structural and functional acute neuropsychiatric phenotypes is not known. We hypothesized that a murine model of mechanical ventilation-induced acute lung injury (VILI) would induce neural injury to the amygdala and hippocampus, brain regions that are implicated in diverse neuropsychiatric conditions, and corresponding delirium- and anxiety-like functional impairments. Furthermore, we hypothesized that these structural and functional changes would reverse with systemic IL-6 inhibition. VILI was induced using high tidal volume (35 cc/kg) mechanical ventilation. Cleaved caspase-3 (CC3) expression was quantified as a neural injury marker and found to be significantly increased in the VILI group compared to spontaneously breathing or anesthetized and mechanically ventilated mice with 10 cc/kg tidal volume. VILI mice treated with systemic IL-6 inhibition had significantly reduced amygdalar and hippocampal CC3 expression compared to saline-treated animals and demonstrated amelioration in acute neuropsychiatric behaviors in open field, elevated plus maze, and Y-maze tests. Overall, these data provide evidence of a pathogenic role of systemic IL-6 in mediating structural and functional acute neuropsychiatric symptoms in VILI and provide preclinical justification to assess IL-6 inhibition as a potential intervention to ameliorate acute neuropsychiatric phenotypes following VILI.


Asunto(s)
Lesión Pulmonar Aguda , Delirio , Lesión Pulmonar Inducida por Ventilación Mecánica , Lesión Pulmonar Aguda/complicaciones , Lesión Pulmonar Aguda/tratamiento farmacológico , Animales , Delirio/complicaciones , Modelos Animales de Enfermedad , Interleucina-6 , Ratones , Fenotipo , Lesión Pulmonar Inducida por Ventilación Mecánica/patología
4.
Neurohospitalist ; 12(4): 697-701, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36147762

RESUMEN

Intrathecal methotrexate (IT MTX) resulting in severe adverse events including life-threatening cerebral edema is not well described. We report a rare case of death in a 37-year-old BRCA1+ woman with metastatic triple-negative breast cancer status post mastectomy following administration of IT MTX for leptomeningeal carcinomatosis. Within the 24 hours after intraoperative IT MTX delivery, she developed neurologically devastating diffuse cerebral edema leading to uncal and cerebellar tonsillar herniation. This case report highlights a rare but devastating side effect of IT MTX.

5.
Crit Care ; 26(1): 258, 2022 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-36030220

RESUMEN

Acute kidney injury is a known clinical risk factor for delirium, an acute cognitive dysfunction that is commonly encountered in the critically ill population. In this comprehensive review of clinical and basic research studies, we detail the epidemiology, clinical implications, pathogenesis, and management strategies of patients with acute kidney injury-associated delirium. Specifically addressed are the pathological roles of endogenous toxin or drug accumulation, acute kidney injury-mediated neuroinflammation, and acute kidney injury-associated volume overload as discrete potential biological mechanisms of the condition. The optimization of clinical contributors and normalization of renal function are reviewed as pragmatic management strategies in addition to potential and emerging therapeutic approaches.


Asunto(s)
Lesión Renal Aguda , Delirio , Desequilibrio Hidroelectrolítico , Enfermedad Crítica , Humanos , Factores de Riesgo
6.
Am J Respir Cell Mol Biol ; 65(4): 403-412, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34014798

RESUMEN

Mechanical ventilation is a known risk factor for delirium, a cognitive impairment characterized by dysfunction of the frontal cortex and hippocampus. Although IL-6 is upregulated in mechanical ventilation-induced lung injury (VILI) and may contribute to delirium, it is not known whether the inhibition of systemic IL-6 mitigates delirium-relevant neuropathology. To histologically define neuropathological effects of IL-6 inhibition in an experimental VILI model, VILI was simulated in anesthetized adult mice using a 35 cc/kg tidal volume mechanical ventilation model. There were two control groups, as follow: 1) spontaneously breathing or 2) anesthetized and mechanically ventilated with 10 cc/kg tidal volume to distinguish effects of anesthesia from VILI. Two hours before inducing VILI, mice were treated with either anti-IL-6 antibody, anti-IL-6 receptor antibody, or saline. Neuronal injury, stress, and inflammation were assessed using immunohistochemistry. CC3 (cleaved caspase-3), a neuronal apoptosis marker, was significantly increased in the frontal (P < 0.001) and hippocampal (P < 0.0001) brain regions and accompanied by significant increases in c-Fos and heat shock protein-90 in the frontal cortices of VILI mice compared with control mice (P < 0.001). These findings were not related to cerebral hypoxia, and there was no evidence of irreversible neuronal death. Frontal and hippocampal neuronal CC3 were significantly reduced with anti-IL-6 antibody (P < 0.01 and P < 0.0001, respectively) and anti-IL-6 receptor antibody (P < 0.05 and P < 0.0001, respectively) compared with saline VILI mice. In summary, VILI induces potentially reversible neuronal injury and inflammation in the frontal cortex and hippocampus, which is mitigated with systemic IL-6 inhibition. These data suggest a potentially novel neuroprotective role of systemic IL-6 inhibition that justifies further investigation.


Asunto(s)
Anticuerpos/farmacología , Apoptosis/efectos de los fármacos , Delirio/metabolismo , Interleucina-6/antagonistas & inhibidores , Neuronas/metabolismo , Lesión Pulmonar Inducida por Ventilación Mecánica/metabolismo , Animales , Delirio/tratamiento farmacológico , Delirio/patología , Modelos Animales de Enfermedad , Femenino , Lóbulo Frontal/lesiones , Lóbulo Frontal/metabolismo , Lóbulo Frontal/patología , Proteínas HSP90 de Choque Térmico/metabolismo , Hipocampo/lesiones , Hipocampo/metabolismo , Hipocampo/patología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Interleucina-6/metabolismo , Ratones , Neuronas/patología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Represoras/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Lesión Pulmonar Inducida por Ventilación Mecánica/tratamiento farmacológico , Lesión Pulmonar Inducida por Ventilación Mecánica/patología
7.
J Cereb Blood Flow Metab ; 41(4): 693-706, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33210576

RESUMEN

Adrenoceptor and calcium channel modulating medications are widely used in clinical practice for acute neurological and systemic conditions. It is generally assumed that the cerebrovascular effects of these drugs mirror that of their systemic effects - and this is reflected in how these medications are currently used in clinical practice. However, recent research suggests that there are distinct cerebrovascular-specific effects of these medications that are related to the unique characteristics of the cerebrovascular anatomy including the regional heterogeneity in density and distribution of adrenoceptor subtypes and calcium channels along the cerebrovasculature. In this review, we critically evaluate existing basic science and clinical research to discuss known and putative interactions between adrenoceptor and calcium channel modulating pharmacotherapies, the neurovascular unit, and cerebrovascular anatomy. In doing so, we provide a rationale for selecting vasoactive medications based on lesion location and lay a foundation for future investigations that will define neuroprotective paradigms of adrenoceptor and calcium channel modulating therapies to improve neurological outcomes in acute neurological and systemic disorders.


Asunto(s)
Adrenérgicos/uso terapéutico , Bloqueadores de los Canales de Calcio/uso terapéutico , Canales de Calcio/efectos de los fármacos , Trastornos Cerebrovasculares/tratamiento farmacológico , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Receptores Adrenérgicos/efectos de los fármacos , Animales , Humanos , Vasoconstrictores/farmacología , Vasoconstrictores/uso terapéutico
8.
Epilepsy Behav ; 49: 313-7, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26198217

RESUMEN

In a rat model of status epilepticus (SE) induced by lithium and pilocarpine and refractory to midazolam, deep hypothermia (20 °C for 30 min) reduced EEG power over 50-fold, stopped SE within 12 min, and reduced EEG spikes by 87%. Hypothermia deserves further investigation as a treatment of last resort for refractory SE. This article is part of a Special Issue entitled "Status Epilepticus".


Asunto(s)
Epilepsia Refractaria/terapia , Hipotermia Inducida/métodos , Estado Epiléptico/terapia , Animales , Convulsivantes , Epilepsia Refractaria/inducido químicamente , Electroencefalografía/efectos de los fármacos , Litio , Masculino , Midazolam/uso terapéutico , Pilocarpina , Ratas , Ratas Wistar
9.
Ann Clin Transl Neurol ; 2(12): 1105-15, 2015 12.
Artículo en Inglés | MEDLINE | ID: mdl-26734661

RESUMEN

OBJECTIVE: Pharmacoresistance develops quickly during repetitive seizures, and refractory status epilepticus (RSE) remains a therapeutic challenge. The outcome of RSE is poor, with high mortality and morbidity. New treatments are needed. Deep hypothermia (20°C) is used clinically during reconstructive cardiac surgery and neurosurgery, and has proved safe and effective in those indications. We tested the hypothesis that deep hypothermia reduces RSE and its long-term consequences. METHODS: We used a model of SE induced by lithium and pilocarpine and refractory to midazolam. Several EEG measures were recorded in both hypothermic (n = 17) and normothermic (n = 20) animals. Neuronal injury (by Fluoro-Jade B), cell-mediated inflammation, and breakdown of the blood-brain barrier (BBB) (by immunohistochemistry) were studied 48 h following SE onset. RESULTS: Normothermic rats in RSE seized for 4.1 ± 1.1 h, and at 48 h they displayed extensive neuronal injury in many brain regions, including hippocampus, dentate gyrus, amygdala, entorhinal and pyriform cortices, thalamus, caudate/putamen, and the frontoparietal neocortex. Deep hypothermia (20°C) of 30 min duration terminated RSE within 12 min of initiation of hypothermia, reduced EEG power and seizure activity upon rewarming, and eliminated SE-induced neuronal injury in most animals. Normothermic rats showed widespread breakdown of the BBB, and extensive macrophage infiltration in areas of neuronal injury, which were completely absent in animals treated with hypothermia. INTERPRETATION: These results suggest that deep hypothermia may open a new therapeutic avenue for the treatment of RSE and for the prevention of its long-term consequences.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA