Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Life Sci Alliance ; 7(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38777370

RESUMEN

The B-cell acute lymphoblastic leukemia (ALL) cell line REH, with the t(12;21) ETV6::RUNX1 translocation, is known to have a complex karyotype defined by a series of large-scale chromosomal rearrangements. Taken from a 15-yr-old at relapse, the cell line offers a practical model for the study of pediatric B-ALL. In recent years, short- and long-read DNA and RNA sequencing have emerged as a complement to karyotyping techniques in the resolution of structural variants in an oncological context. Here, we explore the integration of long-read PacBio and Oxford Nanopore whole-genome sequencing, IsoSeq RNA sequencing, and short-read Illumina sequencing to create a detailed genomic and transcriptomic characterization of the REH cell line. Whole-genome sequencing clarified the molecular traits of disrupted ALL-associated genes including CDKN2A, PAX5, BTG1, VPREB1, and TBL1XR1, as well as the glucocorticoid receptor NR3C1 Meanwhile, transcriptome sequencing identified seven fusion genes within the genomic breakpoints. Together, our extensive whole-genome investigation makes high-quality open-source data available to the leukemia genomics community.


Asunto(s)
Secuenciación Completa del Genoma , Humanos , Línea Celular Tumoral , Secuenciación Completa del Genoma/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Translocación Genética/genética , Proteínas de Fusión Oncogénica/genética , Genómica/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transcriptoma/genética , Perfilación de la Expresión Génica/métodos , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Cariotipificación/métodos , Análisis de Secuencia de ARN/métodos
2.
NAR Genom Bioinform ; 6(1): lqae001, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38288374

RESUMEN

Functional precision medicine (FPM) aims to optimize patient-specific drug selection based on the unique characteristics of their cancer cells. Recent advancements in high throughput ex vivo drug profiling have accelerated interest in FPM. Here, we present a proof-of-concept study for an integrated experimental system that incorporates ex vivo treatment response with a single-cell gene expression output enabling barcoding of several drug conditions in one single-cell sequencing experiment. We demonstrate this through a proof-of-concept investigation focusing on the glucocorticoid-resistant acute lymphoblastic leukemia (ALL) E/R+ Reh cell line. Three different single-cell transcriptome sequencing (scRNA-seq) approaches were evaluated, each exhibiting high cell recovery and accurate tagging of distinct drug conditions. Notably, our comprehensive analysis revealed variations in library complexity, sensitivity (gene detection), and differential gene expression detection across the methods. Despite these differences, we identified a substantial transcriptional response to fludarabine, a highly relevant drug for treating high-risk ALL, which was consistently recapitulated by all three methods. These findings highlight the potential of our integrated approach for studying drug responses at the single-cell level and emphasize the importance of method selection in scRNA-seq studies. Finally, our data encompassing 27 327 cells are freely available to extend to future scRNA-seq methodological comparisons.

3.
BMC Res Notes ; 16(1): 265, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37817248

RESUMEN

OBJECTIVES: The aim of this data paper is to describe a collection of 33 genomic, transcriptomic and epigenomic sequencing datasets of the B-cell acute lymphoblastic leukemia (ALL) cell line REH. REH is one of the most frequently used cell lines for functional studies of pediatric ALL, and these data provide a multi-faceted characterization of its molecular features. The datasets described herein, generated with short- and long-read sequencing technologies, can both provide insights into the complex aberrant karyotype of REH, and be used as reference datasets for sequencing data quality assessment or for methods development. DATA DESCRIPTION: This paper describes 33 datasets corresponding to 867 gigabases of raw sequencing data generated from the REH cell line. These datasets include five different approaches for whole genome sequencing (WGS) on four sequencing platforms, two RNA sequencing (RNA-seq) techniques on two different sequencing platforms, DNA methylation sequencing, and single-cell ATAC-sequencing.


Asunto(s)
Leucemia de Células B , Leucemia Linfocítica Crónica de Células B , Niño , Humanos , Línea Celular , Epigenómica/métodos , Genómica , Leucemia de Células B/genética , Leucemia Linfocítica Crónica de Células B/genética , Transcriptoma , Línea Celular Tumoral
4.
Nat Genet ; 53(3): 379-391, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33603234

RESUMEN

Rapid cellular responses to environmental stimuli are fundamental for development and maturation. Immediate early genes can be transcriptionally induced within minutes in response to a variety of signals. How their induction levels are regulated and their untimely activation by spurious signals prevented during development is poorly understood. We found that in developing sensory neurons, before perinatal sensory-activity-dependent induction, immediate early genes are embedded into a unique bipartite Polycomb chromatin signature, carrying active H3K27ac on promoters but repressive Ezh2-dependent H3K27me3 on gene bodies. This bipartite signature is widely present in developing cell types, including embryonic stem cells. Polycomb marking of gene bodies inhibits mRNA elongation, dampening productive transcription, while still allowing for fast stimulus-dependent mark removal and bipartite gene induction. We reveal a developmental epigenetic mechanism regulating the rapidity and amplitude of the transcriptional response to relevant stimuli, while preventing inappropriate activation of stimulus-response genes.


Asunto(s)
Cromatina/genética , Regulación del Desarrollo de la Expresión Génica , Genes Inmediatos-Precoces , Proteínas del Grupo Polycomb/genética , Animales , Cromatina/metabolismo , Células Madre Embrionarias/fisiología , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Epigénesis Genética , Histonas/metabolismo , Ratones Transgénicos , Mutación , Proteínas del Grupo Polycomb/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Rombencéfalo/efectos de los fármacos , Rombencéfalo/embriología , Células Receptoras Sensoriales/fisiología
5.
Science ; 364(6444): 987-990, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-31048552

RESUMEN

The mammalian brain's somatosensory cortex is a topographic map of the body's sensory experience. In mice, cortical barrels reflect whisker input. We asked whether these cortical structures require sensory input to develop or are driven by intrinsic activity. Thalamocortical columns, connecting the thalamus to the cortex, emerge before sensory input and concur with calcium waves in the embryonic thalamus. We show that the columnar organization of the thalamocortical somatotopic map exists in the mouse embryo before sensory input, thus linking spontaneous embryonic thalamic activity to somatosensory map formation. Without thalamic calcium waves, cortical circuits become hyperexcitable, columnar and barrel organization does not emerge, and the somatosensory map lacks anatomical and functional structure. Thus, a self-organized protomap in the embryonic thalamus drives the functional assembly of murine thalamocortical sensory circuits.


Asunto(s)
Neuronas/fisiología , Corteza Somatosensorial/embriología , Tálamo/embriología , Potenciales de Acción , Animales , Mapeo Encefálico , Señalización del Calcio , Estimulación Eléctrica , Ratones , Ratones Endogámicos ICR , Ratones Transgénicos , Plasticidad Neuronal , Canales de Potasio de Rectificación Interna/genética
6.
J Neurosci ; 37(23): 5634-5647, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28483975

RESUMEN

When activating muscles, motor neurons in the spinal cord also activate Renshaw cells, which provide recurrent inhibitory feedback to the motor neurons. The tight coupling with motor neurons suggests that Renshaw cells have an integral role in movement, a role that is yet to be elucidated. Here we used the selective expression of the nicotinic cholinergic receptor α2 (Chrna2) in mice to genetically target the vesicular inhibitory amino acid transporter (VIAAT) in Renshaw cells. Loss of VIAAT from Chrna2Cre -expressing Renshaw cells did not impact any aspect of drug-induced fictive locomotion in the neonatal mouse or change gait, motor coordination, or grip strength in adult mice of both sexes. However, motor neurons from neonatal mice lacking VIAAT in Renshaw cells received spontaneous inhibitory synaptic input with a reduced frequency, showed lower input resistance, and had an increased number of proprioceptive glutamatergic and calbindin-labeled putative Renshaw cell synapses on their soma and proximal dendrites. Concomitantly, Renshaw cells developed with increased excitability and a normal number of cholinergic motor neuron synapses, indicating a compensatory mechanism within the recurrent inhibitory feedback circuit. Our data suggest an integral role for Renshaw cell signaling in shaping the excitability and synaptic input to motor neurons.SIGNIFICANCE STATEMENT We here provide a deeper understanding of spinal cord circuit formation and the repercussions for the possible role for Renshaw cells in speed and force control. Our results suggest that while Renshaw cells are not directly required as an integral part of the locomotor coordination machinery, the development of their electrophysiological character is dependent on vesicular inhibitory amino acid transporter-mediated signaling. Further, Renshaw cell signaling is closely associated with the molding of motor neuron character proposing the existence of a concerted maturation process, which seems to endow this particular spinal cord circuit with the plasticity to compensate for loss of the Renshaw cell in adult circuit function.


Asunto(s)
Envejecimiento/fisiología , Retroalimentación Fisiológica/fisiología , Neuronas Motoras/fisiología , Inhibición Neural/fisiología , Células de Renshaw/fisiología , Transmisión Sináptica/fisiología , Adaptación Fisiológica/fisiología , Animales , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Vías Nerviosas/fisiología , Plasticidad Neuronal/fisiología , Sinapsis/fisiología
7.
Nat Commun ; 8: 14172, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-28155854

RESUMEN

The cerebral cortex is organized into specialized sensory areas, whose initial territory is determined by intracortical molecular determinants. Yet, sensory cortical area size appears to be fine tuned during development to respond to functional adaptations. Here we demonstrate the existence of a prenatal sub-cortical mechanism that regulates the cortical areas size in mice. This mechanism is mediated by spontaneous thalamic calcium waves that propagate among sensory-modality thalamic nuclei up to the cortex and that provide a means of communication among sensory systems. Wave pattern alterations in one nucleus lead to changes in the pattern of the remaining ones, triggering changes in thalamic gene expression and cortical area size. Thus, silencing calcium waves in the auditory thalamus induces Rorß upregulation in a neighbouring somatosensory nucleus preluding the enlargement of the barrel-field. These findings reveal that embryonic thalamic calcium waves coordinate cortical sensory area patterning and plasticity prior to sensory information processing.


Asunto(s)
Núcleos Talámicos Ventrales/anatomía & histología , Núcleos Talámicos Ventrales/embriología , Animales , Calcio/metabolismo , Femenino , Uniones Comunicantes/metabolismo , Expresión Génica , Humanos , Ratones Endogámicos C57BL , Ratones Transgénicos , Plasticidad Neuronal , Receptores Nucleares Huérfanos/genética , Embarazo , Corteza Somatosensorial/fisiología , Núcleos Talámicos Ventrales/metabolismo , Núcleos Talámicos Ventrales/fisiología , Visión Ocular
8.
Dev Neurobiol ; 77(7): 830-843, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27739248

RESUMEN

The thalamus is a central structure of the brain, primarily recognized for the relay of incoming sensory and motor information to the cerebral cortex but also key in high order intracortical communication. It consists of glutamatergic projection neurons organized in several distinct nuclei, each having a stereotype connectivity pattern and functional roles. In the adult, these nuclei can be appreciated by architectural boundaries, although their developmental origin and specification is only recently beginning to be revealed. Here, we summarize the current knowledge on the specification of the distinct thalamic neurons and nuclei, starting from early embryonic patterning until the postnatal days when active sensory experience is initiated and the overall system connectivity is already established. We also include an overview of the guidance processes important for establishing thalamocortical connections, with emphasis on the early topographical specification. The extensively studied thalamocortical axon branching in the cortex is briefly mentioned; however, the maturation and plasticity of this connection are beyond the scope of this review. In separate chapters, additional mechanisms and/or features that influence the specification and development of thalamic neurons and their circuits are also discussed. Finally, an outlook of future directions is given. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 830-843, 2017.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Vías Nerviosas/crecimiento & desarrollo , Neurogénesis/fisiología , Tálamo/crecimiento & desarrollo , Animales , Axones/fisiología , Humanos , Neuronas/citología
9.
Cereb Cortex ; 27(11): 5054-5069, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27655933

RESUMEN

The thalamus is a central brain structure with topographically ordered long-range axonal projections that convey sensory information to the cortex via distinct nuclei. Although there is an increasing knowledge about genes important for thalamocortical (TC) development, the identification of genetic landmarks of the distinct thalamic nuclei during the embryonic development has not been addressed systematically. Indeed, a more comprehensive understanding of how the axons from the individual nuclei find their way and connect to their corresponding cortical area is called for. Here, we used a genetic dual labeling strategy in mice to purify distinct principal sensory thalamic neurons. Subsequent genome-wide transcriptome profiling revealed genes specifically expressed in each nucleus during embryonic development. Analysis of regulatory regions of the identified genes revealed key transcription factors and networks that likely underlie the specification of individual sensory-modality TC connections. Finally, the importance of correct axon targeting for the specific sensory-modality population transcriptome was evidenced in a Sema6A mutant, in which visual TC axons are derailed at embryonic life. In sum, our data determined the developmental transcriptional profile of the TC neurons that will eventually support sensory processing.


Asunto(s)
Corteza Cerebral/citología , Corteza Cerebral/embriología , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/metabolismo , Núcleos Talámicos/citología , Núcleos Talámicos/embriología , Animales , Axones/metabolismo , Corteza Cerebral/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Hibridación in Situ , Masculino , Ratones Transgénicos , Mutación , Vías Nerviosas/citología , Vías Nerviosas/embriología , Vías Nerviosas/metabolismo , Semaforinas/deficiencia , Semaforinas/genética , Núcleos Talámicos/metabolismo , Transcriptoma
10.
Eur J Neurosci ; 41(7): 889-900, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25712471

RESUMEN

Renshaw cells in the spinal cord ventral horn regulate motoneuron output through recurrent inhibition. Renshaw cells can be identified in vitro using anatomical and cellular criteria; however, their functional role in locomotion remains poorly defined because of the difficulty of functionally isolating Renshaw cells from surrounding motor circuits. Here we aimed to investigate whether the cholinergic nicotinic receptor alpha2 (Chrna2) can be used to identify Renshaw cells (RCs(α2)) in the mouse spinal cord. Immunohistochemistry and electrophysiological characterization of passive and active RCs(α2) properties confirmed that neurons genetically marked by the Chrna2-Cre mouse line together with a fluorescent reporter mouse line are Renshaw cells. Whole-cell patch-clamp recordings revealed that RCs(α2) constitute an electrophysiologically stereotyped population with a resting membrane potential of -50.5 ± 0.4 mV and an input resistance of 233.1 ± 11 MΩ. We identified a ZD7288-sensitive hyperpolarization-activated cation current (Ih) in all RCs(α2), contributing to membrane repolarization but not to the resting membrane potential in neonatal mice. Additionally, we found RCs(α2) to express small calcium-activated potassium currents (I(SK)) that, when blocked by apamin, resulted in a complete attenuation of the afterhyperpolarisation potential, increasing cellular firing frequency. We conclude that RCs(α2) can be genetically targeted through their selective Chrna2 expression and that they display currents known to modulate rebound excitation and firing frequency. The genetic identification of Renshaw cells and their electrophysiological profile is required for genetic and pharmacological manipulation as well as computational simulations with the aim to understand their functional role.


Asunto(s)
Potenciales de Acción/fisiología , Canales Iónicos/metabolismo , Receptores Nicotínicos/metabolismo , Células de Renshaw/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Animales Recién Nacidos , Apamina/farmacología , Vértebras Lumbares , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/fisiología , Neurotransmisores/farmacología , Pirimidinas/farmacología , ARN Mensajero/metabolismo , Receptores Nicotínicos/genética , Células de Renshaw/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Médula Espinal/fisiología , Raíces Nerviosas Espinales/fisiología , Distribución Tisular
11.
Nat Neurosci ; 15(11): 1524-30, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23042082

RESUMEN

The vast diversity of GABAergic interneurons is believed to endow hippocampal microcircuits with the required flexibility for memory encoding and retrieval. However, dissection of the functional roles of defined interneuron types has been hampered by the lack of cell-specific tools. We identified a precise molecular marker for a population of hippocampal GABAergic interneurons known as oriens lacunosum-moleculare (OLM) cells. By combining transgenic mice and optogenetic tools, we found that OLM cells are important for gating the information flow in CA1, facilitating the transmission of intrahippocampal information (from CA3) while reducing the influence of extrahippocampal inputs (from the entorhinal cortex). Furthermore, we found that OLM cells were interconnected by gap junctions, received direct cholinergic inputs from subcortical afferents and accounted for the effect of nicotine on synaptic plasticity of the Schaffer collateral pathway. Our results suggest that acetylcholine acting through OLM cells can control the mnemonic processes executed by the hippocampus.


Asunto(s)
Región CA1 Hipocampal/citología , Región CA3 Hipocampal/citología , Interneuronas/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Animales Recién Nacidos , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Antagonistas del GABA/farmacología , Proteínas Fluorescentes Verdes , Técnicas In Vitro , Interneuronas/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/clasificación , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Técnicas de Placa-Clamp , Picrotoxina/farmacología , Lectinas de Plantas/genética , Lectinas de Plantas/metabolismo , ARN Mensajero/metabolismo , Receptores Nicotínicos/genética , Valina/análogos & derivados , Valina/farmacología , Imagen de Colorante Sensible al Voltaje , Ácido gamma-Aminobutírico/metabolismo
12.
Dev Biol ; 366(2): 279-89, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22521513

RESUMEN

Coordinated limb rhythmic movements take place through organized signaling in local spinal cord neuronal networks. The establishment of these circuitries during development is dependent on the correct guidance of axons to their targets. It has previously been shown that the well-known axon guidance molecule netrin-1 is required for configuring the circuitry that provides left-right alternating coordination in fictive locomotion. The attraction of commissural axons to the midline in response to netrin-1 has been shown to involve the netrin-1 receptor DCC (deleted in Colorectal Cancer). However, the role of DCC for the establishment of CPG coordination has not yet been resolved. We show that mice carrying a null mutation of DCC displayed an uncoordinated left-right activity during fictive locomotion accompanied by a loss of interneuronal subpopulations originating from commissural progenitors. Thus, DCC plays a crucial role in the formation of spinal neuronal circuitry coordinating left-right activities. Together with the previously published results from netrin-1 deficient mice, the data presented in this study suggest a role for the most ventral originating V3 interneurons in synchronous activities over the midline. Further, it provides evidence that axon crossing in the spinal cord is more intricately controlled than in previously suggested models of DCC-netrin-1 interaction.


Asunto(s)
Axones/fisiología , Generadores de Patrones Centrales/fisiología , Receptores de Superficie Celular/fisiología , Médula Espinal/fisiología , Animales , Axones/ultraestructura , Generadores de Patrones Centrales/citología , Interneuronas/fisiología , Interneuronas/ultraestructura , Locomoción/fisiología , Ratones , Receptores de Netrina , Transducción de Señal , Médula Espinal/embriología
13.
J Comp Neurol ; 518(12): 2284-304, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20437528

RESUMEN

Spinal cholinergic neurons are critical for motor function in both the autonomic and somatic nervous systems and are affected in spinal cord injury and in diseases such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy. Using two screening approaches and in situ hybridization, we identified 159 genes expressed in typical cholinergic patterns in the spinal cord. These include two general cholinergic neuron markers, one gene exclusively expressed in motor neurons, and nine genes expressed in unknown subtypes of somatic motor neurons. Further, we present evidence that chondrolectin (Chodl) is expressed by fast motor neurons and that estrogen-related receptor beta (ERRbeta) is a candidate marker for slow motor neurons. In addition, we suggest paired-like homeodomain transcription factor 2 (Pitx2) as a marker for cholinergic partition cells.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Lectinas Tipo C/metabolismo , Neuronas Motoras/fisiología , Receptores de Estrógenos/metabolismo , Médula Espinal/fisiología , Factores de Transcripción/metabolismo , Animales , Técnica del Anticuerpo Fluorescente , Proteínas de Homeodominio/genética , Hibridación in Situ , Lectinas Tipo C/genética , Ratones , Ratones Endogámicos C57BL , Neuronas Motoras/citología , Análisis de Secuencia por Matrices de Oligonucleótidos , Técnicas de Placa-Clamp , Receptores de Estrógenos/genética , Médula Espinal/citología , Factores de Transcripción/genética , Proteína del Homeodomínio PITX2
14.
J Neurosci ; 29(50): 15642-9, 2009 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-20016078

RESUMEN

Neuronal circuits in the spinal cord that produce the rhythmic and coordinated activities necessary for limb movements are referred to as locomotor central pattern generators (CPGs). The identities and preceding development of neurons essential for coordination between left and right limbs are not yet known. We show that the ventral floor plate chemoattractant Netrin-1 preferentially guides dorsally originating subtypes of commissural interneurons, the majority of which are inhibitory. In contrast, the excitatory and ventralmost V3 subtype of interneurons have a normal number of commissural fibers in Netrin-1 mutant mice, thus being entirely independent of Netrin-1-mediated attraction. This selective loss of commissural fibers in Netrin-1 mutant mice resulted in an abnormal circuitry manifested by a complete switch from alternating to synchronous fictive locomotor activity suggesting that the most ventral-originating excitatory commissural interneurons are an important component of a left-right synchrony circuit in the locomotor CPG. Thus, during development, Netrin-1 plays a critical role for the establishment of a functional balanced CPG.


Asunto(s)
Lateralidad Funcional/fisiología , Interneuronas/fisiología , Actividad Motora/fisiología , Factores de Crecimiento Nervioso/fisiología , Red Nerviosa/fisiología , Médula Espinal/fisiología , Proteínas Supresoras de Tumor/fisiología , Animales , Animales Recién Nacidos , Interneuronas/citología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Red Nerviosa/citología , Netrina-1 , Desempeño Psicomotor/fisiología , Médula Espinal/citología
15.
Neuron ; 55(5): 756-67, 2007 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-17785182

RESUMEN

Neuronal network formation in the developing nervous system is dependent on the accurate navigation of nerve cell axons and dendrites, which is controlled by attractive and repulsive guidance cues. Ephrins and their cognate Eph receptors mediate many repulsive axonal guidance decisions by intercellular interactions resulting in growth cone collapse and axon retraction of the Eph-presenting neuron. We show that the Rac-specific GTPase-activating protein alpha2-chimaerin binds activated EphA4 and mediates EphA4-triggered axonal growth cone collapse. alpha-Chimaerin mutant mice display a phenotype similar to that of EphA4 mutant mice, including aberrant midline axon guidance and defective spinal cord central pattern generator activity. Our results reveal an alpha-chimaerin-dependent signaling pathway downstream of EphA4, which is essential for axon guidance decisions and neuronal circuit formation in vivo.


Asunto(s)
Diferenciación Celular/genética , Sistema Nervioso Central/anomalías , Sistema Nervioso Central/metabolismo , Quimerina 1/metabolismo , Conos de Crecimiento/metabolismo , Receptor EphA4/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/anomalías , Encéfalo/metabolismo , Encéfalo/fisiopatología , Comunicación Celular/genética , Células Cultivadas , Sistema Nervioso Central/citología , Quimerina 1/genética , Regulación hacia Abajo/genética , Trastornos Neurológicos de la Marcha/genética , Trastornos Neurológicos de la Marcha/metabolismo , Trastornos Neurológicos de la Marcha/fisiopatología , Regulación del Desarrollo de la Expresión Génica/genética , Conos de Crecimiento/ultraestructura , Ratones , Ratones Noqueados , Vías Nerviosas/anomalías , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiopatología , Unión Proteica/genética , Tractos Piramidales/anomalías , Tractos Piramidales/metabolismo , Tractos Piramidales/fisiopatología , Transducción de Señal/genética , Médula Espinal/anomalías , Médula Espinal/citología , Médula Espinal/metabolismo
16.
J Neurosci ; 26(47): 12294-307, 2006 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-17122055

RESUMEN

Glutamatergic excitatory neurotransmission is dependent on glutamate release from presynaptic vesicles loaded by three members of the solute carrier family, Slc17a6-8, which function as vesicular glutamate transporters (VGLUTs). Here, we show that VGLUT2 (Slc17a6) is required for life ex utero. Vglut2 null mutant mice die immediately after birth because of the absence of respiratory behavior. Investigations at embryonic stages revealed that neural circuits in the location of the pre-Bötzinger (PBC) inspiratory rhythm generator failed to become active. However, neurons with bursting pacemaker properties and anatomical integrity of the PBC area were preserved. Vesicles at asymmetric synapses were fewer and malformed in the Vglut2 null mutant hindbrain, probably causing the complete disruption of AMPA/kainate receptor-mediated synaptic activity in mutant PBC cells. The functional deficit results from an inability of PBC neurons to achieve synchronous activation. In contrast to respiratory rhythm generation, the locomotor central pattern generator of Vglut2 null mutant mice displayed normal rhythmic and coordinated activity, suggesting differences in their operating principles. Hence, the present study identifies VGLUT2-mediated signaling as an obligatory component of the developing respiratory rhythm generator.


Asunto(s)
Tipificación del Cuerpo , Actividad Motora/fisiología , Neuronas Motoras/fisiología , Centro Respiratorio/citología , Mecánica Respiratoria/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/fisiología , Animales , Animales Recién Nacidos , Bicuculina/farmacología , Embrión de Mamíferos , Antagonistas del GABA/farmacología , Regulación del Desarrollo de la Expresión Génica/fisiología , Glicinérgicos/farmacología , Inmunohistoquímica/métodos , Hibridación in Situ/métodos , Técnicas In Vitro , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión/métodos , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/ultraestructura , Periodicidad , Receptores de Neuroquinina-1/metabolismo , Mecánica Respiratoria/genética , Médula Espinal/fisiología , Estricnina/farmacología , Tirosina 3-Monooxigenasa/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/deficiencia
17.
J Physiol Paris ; 100(5-6): 297-303, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17618093

RESUMEN

Central pattern generators (CPGs) are defined as neuronal circuits capable of producing a rhythmic and coordinated output without the influence of sensory input. The locomotor and respiratory neuronal circuits are two of the better-characterized CPGs, although much work remains to fully understand how these networks operate. Glutamatergic neurons are involved in most neuronal circuits of the nervous system and considerable efforts have been made to study glutamate receptors in nervous system signaling using a variety of approaches. Because of the complexity of glutamate-mediated signaling and the variety of receptors triggered by glutamate, it has been difficult to pinpoint the role of glutamatergic neurons in neuronal circuits. In addition, glutamate is an amino acid used by every cell, which has hampered identification of glutamatergic neurons. Glutamatergic excitatory neurotransmission is dependent on the release from glutamate-filled presynaptic vesicles loaded by three members of the solute carrier family, Slc17a6-8, which function as vesicular glutamate transporters (VGLUTs). Recent data describe that Vglut2 (Slc17a6) null mutant mice die immediately after birth due to a complete loss of the stable autonomous respiratory rhythm generated by the pre-Bötzinger complex. Surprisingly, we found that basal rhythmic locomotor activity is not affected in Vglut2 null mutant embryos. With this perspective, we discuss data regarding presence of VGLUT1, VGLUT2 and VGLUT3 positive neuronal populations in the spinal cord.


Asunto(s)
Ácido Glutámico/fisiología , Actividad Motora/fisiología , Neuronas Motoras/fisiología , Periodicidad , Centro Respiratorio/citología , Mecánica Respiratoria/fisiología , Animales , Conducta Animal , Ácido Glutámico/farmacología , Hibridación in Situ/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas Motoras/efectos de los fármacos , Mecánica Respiratoria/genética , Médula Espinal/citología , Médula Espinal/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA