Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Nat Commun ; 10(1): 4345, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31554798

RESUMEN

Spin wave logic circuits using quantum oscillations of spins (magnons) as carriers of information have been proposed for next generation computing with reduced energy demands and the benefit of easy parallelization. Current realizations of magnonic devices have micrometer sized patterns. Here we demonstrate the feasibility of biogenic nanoparticle chains as the first step to truly nanoscale magnonics at room temperature. Our measurements on magnetosome chains (ca 12 magnetite crystals with 35 nm particle size each), combined with micromagnetic simulations, show that the topology of the magnon bands, namely anisotropy, band deformation, and band gaps are determined by local arrangement and orientation of particles, which in turn depends on the genotype of the bacteria. Our biomagnonic approach offers the exciting prospect of genetically engineering magnonic quantum states in nanoconfined geometries. By connecting mutants of magnetotactic bacteria with different arrangements of magnetite crystals, novel architectures for magnonic computing may be (self-) assembled.


Asunto(s)
Magnetosomas/metabolismo , Magnetospirillum/metabolismo , Nanopartículas/química , Teoría Cuántica , Anisotropía , Simulación por Computador , Cristalización , Genotipo , Magnetismo , Magnetosomas/química , Magnetosomas/genética , Magnetospirillum/química , Magnetospirillum/genética , Mutación , Tamaño de la Partícula , Marcadores de Spin
2.
Biophys J ; 113(3): 637-644, 2017 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-28793218

RESUMEN

Magnetotactic bacteria form assemblies of magnetic nanoparticles called magnetosomes. These magnetosomes are typically arranged in chains, but other forms of assemblies such as clusters can be observed in some species and genetic mutants. As such, the bacteria have developed as a model for the understanding of how organization of particles can influence the magnetic properties. Here, we use ferromagnetic resonance spectroscopy to measure the magnetic anisotropies in different strains of Magnetosprillum gryphiswaldense MSR-1, a bacterial species that is amendable to genetic mutations. We combine our experimental results with a model describing the spectra. The model includes chain imperfections and misalignments following a Fisher distribution function, in addition to the intrinsic magnetic properties of the magnetosomes. Therefore, by applying the model to analyze the ferromagnetic resonance data, the distribution of orientations in the bulk sample can be retrieved in addition to the average magnetosome arrangement. In this way, we quantitatively characterize the magnetosome arrangement in both wild-type cells and ΔmamJ mutants, which exhibit differing magnetosome organization.


Asunto(s)
Magnetosomas/metabolismo , Magnetospirillum/citología , Espectroscopía de Resonancia Magnética , Magnetospirillum/genética , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA