RESUMEN
Objective: Uterine fibroids (UFs) are the most common benign tumors in women, and their prevalence varies between 5.4 and 77.0% in reproductive-aged women. Patients with UFs may experience severe symptoms that they can affect different aspects of their lives, including quality of life. This study aimed to investigate the health-related quality of life among Iranian women with UFs. Materials and methods: This cross-sectional study was conducted at Imam Hossein Hospital, Tehran, Iran, between November 2023 and February 2024, Data collection was based on the census method. Uterine Fibroid Symptom and Health-related Quality of Life (UFS-QOL) questionnaire was used to assess symptom severity and health-related quality of life (HRQOL) of women with UFs. Data were analyzed using the SPSS software version 23.0. Results: Overall, 220 patients with a mean age of 43.10±5.01 years were included in the study. Patients had total UFS-QOL score of 64.11±20.35 with the following subscales' scores: symptom severity: (19.00±6.39), concern: (60.79±26.47), activities: (71.76±23.02), energy/mood: (54.39±25.14), control: (66.52±22.82), self-consciousness: (77.63±26.39), and sexual function: (59.40±31.18). Furthermore, patients with multiparity history (P= 0.001), obesity (P<0.001), increased menstrual duration (P<0.001), irregular menstruation (P<0.001), and hyper menorrhea (P<0.001) had lower HRQOL scores. Conclusion: All subscales' scores of HRQOL were over 50 in patients with UF. HRQOL in these patients can be affected by certain factors, such as features of the menstrual cycle, multiparity, and obesity.
RESUMEN
The precise organization of pre- and postsynaptic terminals is crucial for normal synaptic function in the brain. In addition to its canonical role as a neurotrophin-3 receptor tyrosine kinase, postsynaptic TrkC promotes excitatory synapse organization through interaction with presynaptic receptor-type tyrosine phosphatase PTPσ. To isolate the synaptic organizer function of TrkC from its role as a neurotrophin-3 receptor, we generated mice carrying TrkC point mutations that selectively abolish PTPσ binding. The excitatory synapses in mutant mice had abnormal synaptic vesicle clustering and postsynaptic density elongation, more silent synapses, and fewer active synapses, which additionally exhibited enhanced basal transmission with impaired release probability. Alongside these phenotypes, we observed aberrant synaptic protein phosphorylation, but no differences in the neurotrophin signaling pathway. Consistent with reports linking these aberrantly phosphorylated proteins to neuropsychiatric disorders, mutant TrkC knock-in mice displayed impaired social responses and increased avoidance behavior. Thus, through its regulation of synaptic protein phosphorylation, the TrkC-PTPσ complex is crucial for the maturation, but not formation, of excitatory synapses in vivo.
RESUMEN
Paraquat (PQ) is an herbicide toxin that induces injury in different organs. The anti-inflammatory and antioxidant effects of carvacrol were reported previously. The effects of carvacrol and pioglitazone (Pio) alone and their combination on inhaled PQ-induced systemic and lung oxidative stress and inflammation as well as behavioral changes were examined in rats. In this study, animals were exposed to saline (control [Ctrl]) or PQ (PQ groups) aerosols. PQ-exposed animals were treated with 0.03 mg/kg/day dexamethasone (Dexa), 20 and 80 mg/kg/day carvacrol (C-L and C-H), 5 mg/kg/day Pio, and Pio+C-L for 16 days. Inhaled PQ markedly enhanced total and differential white blood cell (WBC) counts, nitric oxide (NO), and malondialdehyde (MDA) levels but decreased catalase (CAT) and superoxide dismutase (SOD) activities and thiol levels both in the bronchoalveolar lavage fluid (BALF) and blood and increased interferon-gamma (INF-γ) and interleukin-10 (IL-10) levels in the BALF (p < 0.001 for all cases) except lymphocyte count in blood which was not significantly changed. The escape latency and traveled distance were increased in the PQ group. However, the time spent in the target quadrant in the Morris water maze (MWM) test and the duration of time latency in the dark room in the shuttle box test were reduced after receiving an electrical shock (p < 0.05-p < 0.001). Inhaled PQ-induced changes were significantly improved in carvacrol, Pio, Dexa, and especially in the combination of the Pio+C-L treated groups (p < 0.05-p < 0.001). Carvacrol and Pio improved PQ-induced changes similar to Dexa, but ameliorative effects produced by combination treatments of Pio+C-L were more prominent than Pio and C-L alone, suggesting a potentiating effect for the combination of the two agents.
RESUMEN
Breast cancer is considered as the most common malignancy in women and the second leading cause of death related to cancer. Recombinant DNA technologies accelerated the development of antibody-based cancer therapy, which is effective in a broad range of cancers. The objective of the present study was to perform a systematic review on breast cancer immunotherapy using single-chain fragment variable (scFv) antibody formats. Searches were performed up to March 2023 using PubMed, Scopus, and Web of Science (ISI) databases. Three reviewers independently assessed study eligibility, data extraction, and evaluated the methodological quality of included primary studies. Different immunotherapy approaches have been identified and the most common approaches were scFv-conjugates, followed by simple scFvs and chimeric antigen receptor (CAR) therapy, respectively. Among breast cancer antigens, HER superfamily, CD family, and EpCAM were applied as the most important breast cancer immunotherapy targets. The present study shed more lights on scFv-based breast cancer immunotherapy approaches.
Asunto(s)
Neoplasias de la Mama , Inmunoterapia , Anticuerpos de Cadena Única , Humanos , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/uso terapéutico , Neoplasias de la Mama/terapia , Neoplasias de la Mama/inmunología , Femenino , Inmunoterapia/métodos , Antígenos de Neoplasias/inmunología , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Inmunoterapia Adoptiva/métodos , AnimalesRESUMEN
BACKGROUND: Oral candidiasis (OC) is a prevalent opportunistic infection in patients with human immunodeficiency virus (HIV) infection. The increasing resistance to antifungal agents in HIV-positive individuals suffering from OC raised concerns. Thus, this study aimed to investigate the prevalence of drug-resistant OC in HIV-positive patients. METHODS: Pubmed, Web of Science, Scopus, and Embase databases were systematically searched for eligible articles up to November 30, 2023. Studies reporting resistance to antifungal agents in Candida species isolated from HIV-positive patients with OC were included. Baseline characteristics, clinical features, isolated Candida species, and antifungal resistance were independently extracted by two reviewers. The pooled prevalence with a 95% confidence interval (CI) was calculated using the random effect model or fixed effect model. RESULTS: Out of the 1942 records, 25 studies consisting of 2564 Candida species entered the meta-analysis. The pooled prevalence of resistance to the antifungal agents was as follows: ketoconazole (25.5%, 95% CI: 15.1-35.8%), fluconazole (24.8%, 95% CI: 17.4-32.1%), 5-Flucytosine (22.9%, 95% CI: -13.7-59.6%), itraconazole (20.0%, 95% CI: 10.0-26.0%), voriconazole (20.0%, 95% CI: 1.9-38.0%), miconazole (15.0%, 95% CI: 5.1-26.0%), clotrimazole (13.4%, 95% CI: 2.3-24.5%), nystatin (4.9%, 95% CI: -0.05-10.3%), amphotericin B (2.9%, 95% CI: 0.5-5.3%), and caspofungin (0.1%, 95% CI: -0.3-0.6%). Furthermore, there were high heterogeneities among almost all included studies regarding the resistance to different antifungal agents (I2 > 50.00%, P < 0.01), except for caspofungin (I2 = 0.00%, P = 0.65). CONCLUSIONS: Our research revealed that a significant number of Candida species found in HIV-positive patients with OC were resistant to azoles and 5-fluocytosine. However, most of the isolates were susceptible to nystatin, amphotericin B, and caspofungin. This suggests that initial treatments for OC, such as azoles, may not be effective. In such cases, healthcare providers may need to consider prescribing alternative treatments like polyenes and caspofungin. REGISTRATION: The study protocol was registered in the International Prospective Register of Systematic Reviews as PROSPERO (Number: CRD42024497963).
Asunto(s)
Antifúngicos , Candida , Candidiasis Bucal , Farmacorresistencia Fúngica , Infecciones por VIH , Humanos , Candidiasis Bucal/microbiología , Candidiasis Bucal/tratamiento farmacológico , Candidiasis Bucal/epidemiología , Antifúngicos/uso terapéutico , Antifúngicos/farmacología , Infecciones por VIH/complicaciones , Infecciones por VIH/microbiología , Candida/efectos de los fármacos , Candida/aislamiento & purificación , Candida/clasificación , Prevalencia , Pruebas de Sensibilidad Microbiana , Infecciones Oportunistas Relacionadas con el SIDA/microbiología , Infecciones Oportunistas Relacionadas con el SIDA/epidemiología , Infecciones Oportunistas Relacionadas con el SIDA/tratamiento farmacológico , Fluconazol/uso terapéutico , Fluconazol/farmacologíaRESUMEN
Toxicological effects of silver nanoparticles (SNPs) in different organisms have been studied; however, interactions of SNPs with other environmental pollutants such as mercury are poorly understood. Herein, bioassay tests were performed according to ΟECD 201 guideline to assess the toxic effects induced by mercury ions (mercury chloride, MCl) on the marine microalga Chaetoceros muelleri in the presence of SNPs or silver ions (silver nitrate, SN). Acute toxicity tests displayed that the presence of SNPs or SN (0.01 mg L-1) significantly reduced the toxicity of MCl (0.001, 0.01, 0.1, 1, 10, and 100 mg L-1) and increased the IC50 of MCl from 0.072 ± 0.014 to 0.381 ± 0.029 and 0.676 ± 0.034 mg L-1, respectively. In the presence of SN or SNPs, the mercury-reducing effect on algal population growth significantly decreased. Considering the increase of IC50, the mercury toxicity decreased approximately 5.44 and 9.66 times in the presence of SNPs or SN, respectively. The chlorophyll a and c contents decreased at all exposures; however, the decrease by MCl-SNPs and MCl-SN was significantly less than MCl except at 1 mg L-1. The lowering effect of MCl-SN on chlorophyll contents was less than MCl and MCl-SNPs. MCl exposure induced significant raises in total protein content (TPC) at concentrations < 0.01mg L-1, with a maximum of ~ 70.83% attained at 100 mg L-1. The effects of MCl-SNPs and MCl-SN on TPC were significantly less than MCl. Total lipid content (TLC) at all MCl concentrations was higher than the control, while at coexposure to MCl-SN, TLC did not change until 0.01 mg L-1 compared with the control. The effects of MCl-SN and MCL-SNPs on TPC and TLC were in line with toxicity results, and were significantly less than those of MCl individually, confirming their antagonistic effects on MCl. The morphological changes of algal cells and mercury content of the cell wall at MCl-SN and MCl-SNPs were mitigated compared with MCl exposure. These findings highlight the mitigatory impacts of silver species on mercury toxicity, emphasizing the need for better realizing the mixture toxicity effects of pollutants in the water ecosystem.
Asunto(s)
Contaminantes Ambientales , Mercurio , Nanopartículas del Metal , Microalgas , Contaminantes Químicos del Agua , Mercurio/toxicidad , Clorofila A/metabolismo , Microalgas/metabolismo , Nanopartículas del Metal/toxicidad , Ecosistema , Plata/toxicidad , Contaminantes Ambientales/toxicidad , Iones , Contaminantes Químicos del Agua/toxicidadRESUMEN
Crocus sativus L. was used for the treatment of a wide range of disorders in traditional medicine. Due to the extensive protective and treatment properties of C. sativus and its constituents in various diseases, the purpose of this review is to collect a summary of its effects, on experimental studies, both in vitro and in vivo. Databases such as PubMed, Science Direct, and Scopus were explored until January 2023 by employing suitable keywords. Several investigations have indicated that the therapeutic properties of C. sativus may be due to its anti-oxidant and anti-inflammatory effects on the nervous, cardiovascular, immune, and respiratory systems. Further research has shown that its petals also have anticonvulsant properties. Pharmacological studies have shown that crocetin and safranal have anti-oxidant properties and through inhibiting the release of free radicals lead to the prevention of disorders such as tumor cell proliferation, atherosclerosis, hepatotoxicity, bladder toxicity, and ethanol induced hippocampal disorders. Numerous studies have been performed on the effect of C. sativus and its constituents in laboratory animal models under in vitro and in vivo conditions on various disorders. This is necessary but not enough and more clinical trials are needed to investigate unknown aspects of the therapeutic properties of C. sativus and its main constituents in different disorders.
RESUMEN
Background: During X-ray imaging, pulmonary movements can cause many image artifacts. To tackle this issue, several studies, including mathematical algorithms and 2D-3D image registration methods, have been presented. Recently, the application of deep artificial neural networks has been considered for image generation and prediction. Objective: In this study, a convolutional long short-term memory (ConvLSTM) neural network is used to predict spatiotemporal 4DCT images. Material and Methods: In this analytical analysis study, two ConvLSTM structures, consisting of stacked ConvLSTM models along with the hyperparameter optimizer algorithm and a new design of the ConvLSTM model are proposed. The hyperparameter optimizer algorithm in the conventional ConvLSTM includes the number of layers, number of filters, kernel size, epoch number, optimizer, and learning rate. The two ConvLSTM structures were also evaluated through six experiments based on Root Mean Square Error (RMSE) and structural similarity index (SSIM). Results: Comparing the two networks demonstrates that the new design of the ConvLSTM network is faster, more accurate, and more reliable in comparison to the tuned-stacked ConvLSTM model. For all patients, the estimated RMSE and SSIM were 3.17 and 0.988, respectively, and a significant improvement can be observed in comparison to the previous studies. Conclusion: Overall, the results of the new design of the ConvLSTM network show excellent performances in terms of RMSE and SSIM. Also, the generated CT images with the new design of the ConvLSTM model show a good consistency with the corresponding references regarding registration accuracy and robustness.
RESUMEN
In this study, a tri-component composite named Zr/SiW12/GO was meticulously prepared through an ultrasonic-assisted method. This composite incorporates zirconium nanoparticles (Lewis acid), a negatively charged Keggin type polyoxometalate, and graphene oxide, and serves as a remarkable heterogeneous catalyst. The Keggin component plays multiple roles as reducing, encapsulating, and bridging agents, resulting in a cooperative effect among the three components that significantly enhances the catalytic activity. The catalytic performance of Zr/SiW12/GO was thoroughly investigated in the oxidation of sulfides to sulfoxides under mild conditions, employing H2O2 as the oxidant. Remarkably, this composite exhibited exceptional stability and could be effortlessly recovered and reused up to four times without any noticeable loss in its catalytic activity.
RESUMEN
Regarding the widespread use of titanium dioxide nanoparticles (TiO2NPs) in industry, many concerns have been raised about the risks of their potential release into aquatic ecosystems. Among the marine primary producers, Tetraselmis suecica is an ecologically important microalgae species used also as live feed in the shrimp culture industry. In the present study, the impacts of TiO2NPs on growth performance, photosynthetic pigments, lipid and protein content and its interaction with the cells of T. suecica were assessed. Based on the preliminary tests and OECD suggestion, concentrations of 5, 10, 50, 100, 200 and 400 mg/L TiO2NPs were applied to algal cells for 10 days. With increasing concentration, a decrease in T. suecica cell density was observed each day. TiO2NPs induced a half-maximal inhibitory concentration (IC50) of 106.26 mg/L on algal cells on the 3rd day. Chlorophyll a and b contents of the microalga decreased up to 56.08% and 52.74%, respectively following the exposure to TiO2NPs at 400 mg/L. TiO2NPs also decreased the algal contents of protein and lipid up to 7.21% and 50.64%, respectively at the highest concentration. Based on FTIR, FESEM with EDS and mapping analyses, the interaction of TiO2NPs with the T. suecica cells was revealed. The stocks of T. suecica could be damaged by the toxic effects of the released TiO2NPs affecting their application as live feed in mariculture.
Asunto(s)
Chlorophyta , Microalgas , Nanopartículas , Clorofila A , Ecosistema , Nanopartículas/toxicidad , Fotosíntesis , LípidosRESUMEN
Vaccination programmes provide a safe, effective and cost-efficient strategy for maintaining population health. In veterinary medicine, vaccination not only reduces disease within animal populations but also serves to enhance public health by targeting zoonoses. Nevertheless, for many pathogens, an effective vaccine remains elusive. Recently, nanovaccines have proved to be successful for various infectious and non-infectious diseases of animals. These novel technologies, such as virus-like particles, self-assembling proteins, polymeric nanoparticles, liposomes and virosomes, offer great potential for solving many of the vaccine production challenges. Their benefits include low immunotoxicity, antigen stability, enhanced immunogenicity, flexibility sustained release and the ability to evoke both humoral and cellular immune responses. Nanovaccines are more efficient than traditional vaccines due to ease of control and plasticity in their physio-chemical properties. They use a highly targeted immunological approach which can provide strong and long-lasting immunity. This article reviews the currently available nanovaccine technology and considers its utility for both infectious diseases and non-infectious diseases such as auto-immunity and cancer. Future research opportunities and application challenges from bench to clinical usage are also discussed.
Asunto(s)
Enfermedades no Transmisibles , Animales , Enfermedades no Transmisibles/veterinaria , Polímeros , Salud Pública , Vacunación/veterinariaRESUMEN
Background: Neurostimulation is one of the new therapeutic approaches in patients with drug-resistant epilepsy, and despite its high efficiency, its mechanism of action is still unclear. On the one hand, electrical stimulation in the human brain is immoral; on the other hand, the creation of the epilepsy model in laboratory animals affects the entire brain network. As a result, one of the ways to achieve the neurostimulation mechanism is to use epileptiform activity models In vitro. In vitro models, by accessing the local network from the whole brain, we can understand the mechanisms of action of neurostimulation. Methods: A literature search using scientific databases including PubMed, Google Scholar, and Scopus, using "Neurostimulation" and "epileptiform activity" combined with "high-frequency stimulation", " low-frequency stimulation ", and "brain slices" as keywords were conducted, related concepts to the topic gathered and are used in this paper. Results: Electrical stimulation causes neuronal depolarization and the release of GABAA, which inhibits neuronal firing. Also, electrical stimulation inhibits the nervous tissue downstream of the stimulation site by preventing the passage of nervous activity from the upstream to the downstream of the axon. Conclusion: Neurostimulation techniques consisting of LFS and HFS have a potential role in treating epileptiform activity, with some studies having positive results. Further investigations with larger sample sizes and standardized outcome measures can be conducted to validate the results of previous studies.
RESUMEN
A patient with epilepsy was shown to have neurobiological, psychological, cognitive, and social issues as a result of recurring seizures, which is regarded as a chronic brain disease. However, despite numerous drug treatments, approximately, 30%-40% of all patients are resistant to antiepileptic drugs. Therefore, newer therapeutic modalities are introduced into clinical practice which involve neurostimulation and direct stimulation of the brain. Hence, we review published literature on vagus nerve stimulation, trigeminal nerve stimulation, applying responsive stimulation systems, and deep brain stimulation (DBS) in animals and epileptic patient with an emphasis on drug-resistant epilepsy.
RESUMEN
BACKGROUND: multidrug resistance (MDR) is One of the foremost challenges in overcoming breast cancer. Various molecular processes are involved in the development of MDR in breast cancer cells, including over expression of ABC transporters such as ABCG2 (BCRP), increase breast cancer stem cells drug resistance, and epithelial mesenchymal transition. AIMS: In the present study, we used bioinformatics and experimental analysis to investigate the role of miR-548 K, in the modulating of ABCG2, in MDR breast cancer cells. METHODS AND RESULTS: In silico inspections introduce 14 microRNAs targeting 3'-UTR region of ABCG2 transcripts, which are probably involved in breast cancer drug resistance. An association was highlighted between miR-548 k with ABC transporter family. The expression level of ABCG2 gene in MCF7-MX cell lines was significantly more than MCF7 cell lines. On the other hand, we increased the expression of miR-548 K in MCF7-MX and MCF7 cell lines through its transfection, which dramatically coincided with decreasion in the ABCG2 transcripts level. Additional studies on patient samples revealed that the expression of ABCG2 showed an increase in ABCG2 level in neoadjuvant chemotherapy drugs resistance (NCDR) patients compared to primary pre-operative chemotherapy drugs response (PCDR) patients. Also, a reduction in the expression of miR-548 K in NCDR patients was revealed. CONCLUSION: The results of our study suggest that miR-548 K may be involved in modulating the expression of ABCG2 in MDR breast cancer cells.
Asunto(s)
Neoplasias de la Mama , MicroARNs , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Línea Celular Tumoral , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Resistencia a Múltiples Medicamentos/genética , MicroARNs/genética , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/farmacología , Expresión GénicaRESUMEN
Aim: Low frequency stimulation (LFS) inhibits neuronal hyperexcitability following epileptic activity. However, knowledge about LFS' inhibitory mechanisms is lacking. Here, α1 and α2 adrenergic receptors' roles in mediating LFS inhibitory action on high-K+ induced epileptiform activity (EA) was examined in rat hippocampal slices.Materials and methods: LFS (1 Hz, 900 pulses) was applied to the Schaffer collaterals. Whole-cell, patch clamp recording was used to measure changes in CA1 pyramidal neurons' excitability. By applying high-K+ on hippocampal slices, EA was induced, and neuronal excitability increased.Results: When administered at the beginning of EA, LFS reduced neuronal excitability. In the presence of prazosin (10 µM, an α1 adrenergic receptor antagonist) and yohimbine (5 µM, an α2 adrenergic receptor antagonist), LFS' typically has a restorative impact on EA-induced membrane potential hyperpolarization and spike firing frequency, but this effect was reduced after high-K+ washout; These antagonists did not have a significant effect on LFS' inhibitory action on spike firing during EA.Conclusion: These findings suggest that LFS' anticonvulsant effect, on neuronal hyperexcitability following high-K+ EA, may be mediated partly through α adrenergic receptors in hippocampal slices.
Asunto(s)
Epilepsia , Receptores Adrenérgicos alfa , Ratas , Animales , Ratas Wistar , Hipocampo , Epilepsia/terapia , Receptores Adrenérgicos alfa 2 , Antagonistas Adrenérgicos/farmacología , Estimulación EléctricaRESUMEN
Epithelial-mesenchymal transition (EMT) is a fundamental process for embryonic development during which epithelial cells acquire mesenchymal characteristics, and the underlying mechanisms confer malignant features to carcinoma cells such as dissemination throughout the organism and resistance to anticancer treatments. During the past decades, an entire class of molecules, called non-coding RNA (ncRNA), has been characterized as a key regulator of almost every cellular process, including EMT. Like protein-coding genes, ncRNAs can be deregulated in cancer, acting as oncogenes or tumor suppressors. The various forms of ncRNAs, including microRNAs, PIWI-interacting RNAs, small nucleolar RNAs, transfer RNA-derived RNA fragments, long non-coding RNAs, and circular RNAs can orchestrate the complex regulatory networks of EMT at multiple levels. Understanding the molecular mechanism underlying ncRNAs in EMT can provide fundamental insights into cancer metastasis and may lead to novel therapeutic approaches. In this review, we describe recent advances in the understanding of ncRNAs in EMT and provide an overview of recent ncRNA applications in the clinic.
Asunto(s)
MicroARNs , Neoplasias , Transición Epitelial-Mesenquimal/genética , Humanos , MicroARNs/genética , Neoplasias/genética , Neoplasias/patología , ARN Circular , ARN no Traducido/genéticaRESUMEN
Polyoxometalates (POMs) as efficient catalysts can be used a wide range of chemical transformations due to their tunable Brønsted/Lewis-acidity and redox properties. Herein, we reported two hybrid and heterogeneous lacunary Keggin catalysts: (TBA)7[PW11O39] (TBA-PW11) and (TBA)8[SiW11O39]·4H2O (TBA-SiW11) (TBA+: tetrabutylammonium) in which [XW11O39]n- anions were coated by TBA+ cations. In this form, TBA+ can easily trap reactants on the surface of the catalysts and increase the catalytic reaction. Therefore, the catalytic performance of both POMs was tested in cyanosilylation of numerous compounds bearing-carbonyl group and trimethylsilyl cyanide under solvent-free conditions. TBA-PW11 is more effective than TBA-SiW11, conceivably due to the higher Lewis acidity of the P than the Si center and to the higher accessibility of the metal centers in the framework structure. Noteworthy, the recyclability and heterogeneity of both POMs catalysts were also examined, and the results confirmed that they remain active at least after three recycling procedures.
RESUMEN
The musculoskeletal (MS) system consists of bone, cartilage, tendon, ligament, and skeletal muscle, which forms the basic framework of the human body. This system plays a vital role in appropriate body functions, including movement, the protection of internal organs, support, hematopoiesis, and postural stability. Therefore, it is understandable that the damage or loss of MS tissues significantly reduces the quality of life and limits mobility. Tissue engineering and its applications in the healthcare industry have been rapidly growing over the past few decades. Tissue engineering has made significant contributions toward developing new therapeutic strategies for the treatment of MS defects and relevant disease. Among various biomaterials used for tissue engineering, natural polymers offer superior properties that promote optimal cell interaction and desired biological function. Natural polymers have similarity with the native ECM, including enzymatic degradation, bio-resorb and non-toxic degradation products, ability to conjugate with various agents, and high chemical versatility, biocompatibility, and bioactivity that promote optimal cell interaction and desired biological functions. This review summarizes recent advances in applying natural-based scaffolds for musculoskeletal tissue engineering.
RESUMEN
Titanium dioxide nanoparticles (TiO2NPs) have been extensively used in industry, raising many concerns about their release into the aquatic environments. In marine ecosystems, microalgae are major primary producers; among them, Chaetoceros muelleri is an important microalga in the aquaculture industry as live feed. The impacts of TiO2NPs on the growth, photosynthetic pigments, protein and lipid contents, and the interaction of TiO2NPs with the cell wall of C. muelleri were investigated in the present study. Algal cells were exposed to concentrations of 5, 10, 50, 100, 200, and 400 mg/L TiO2NPs for 10 days. There was a significant difference in the growth between the control and TiO2NPs treatments on each day. The half-maximal inhibitory concentration (IC50) of TiO2NPs on algal cells was found to be 10.08 and 5.01 mg/L on the 3rd and 10th days, respectively. The contents of chlorophyll a and c reduced significantly in the TiO2NPs-treated microalgae. TiO2NPs also reduced the protein and lipid contents in the treated microalgae, up to 13.02% and 47.6% respectively, at the highest concentration. The interaction of TiO2NPs with the C. muelleri cells was obvious based on Fourier transform infrared spectroscopy, microscopic images, EDS, and Mapping analyses. Toxic effects of the released TiO2NPs can damage the stocks of C. muelleri as an important live feed in mariculture.
Asunto(s)
Diatomeas , Microalgas , Nanopartículas , Clorofila A/metabolismo , Ecosistema , Lípidos , Microalgas/metabolismo , Nanopartículas/toxicidad , Titanio/metabolismo , Titanio/toxicidadRESUMEN
Colorectal cancer is the 2nd leading cause of death in humans because of cancer. This rank of death could be due to the high rate of incidence from one hand, and the lack of sufficient diagnostic and therapeutic approaches from the other hand. Thus, molecular tools have been emerging as the potential biomarker to improve the early diagnosis and therapeutic management that subsequently could lead to the heightened survival rate of colorectal cancer patients. Long non-coding RNA (lncRNAs) have shown promising capabilities to be used in clinics. The profiling methods could identify novel aberrantly expressed lncRNAs in colorectal cancer. We, thus, performed a comprehensive and unbiased approach to shortlist the dysregulated lncRNAs based on the colon adenocarcinoma TCGA data. An unbiased in silico method was used to rank the yet to profiled lncRNAs in colorectal cancer. qPCR was used to measure the expression level of selected lncRNAs. Our results nominated ESRG, LINC00518, PWRN1, and TTTY14 lncRNAs as the top-hit novel lncRNAs with aberrant expression in colon cancer. The qPCR method was used to profile these lncRNAs that showed the up-regulation of ESRG and LINC00518, and down-regulation of TTTY14 in thirty paired colorectal cancer specimens. The statistical analyses demonstrated that ESRG, LINC00518 and PWRN1 could distinguish the tumor from normal samples. Moreover, ESRG showed a negative correlation with the overall survival of patients. These diagnostic and prognostic results suggest that profiling ESRG, LINC00518 and PWRN1 s may have implications in clinics.