RESUMEN
BACKGROUND: Exposure to air pollution can affect the health of individuals with respiratory disease, but may also impede the health and performance of athletes. This is potentially relevant for people travelling to and competing in the Olympic and Paralympic Games (OPG) in Paris. We describe anticipated air quality in Paris based on historical monitoring data and describe the impact of the process on the development of monitoring strategies for future international sporting events. METHODS: Air pollutant data for July to September 2020-2023 and pollen data for 2015-2022 were provided by Airparif (particulate matter (PM2.5), nitrogen dioxide (NO2) and ozone (O3)) and RNSA stations in the Paris region. Airparif's street-level numerical modelling provided spatial data for the OPG venues. RESULTS: The maximum daily mean PM2.5 was 11±6 µg/m3 at traffic stations, below the WHO recommended daily air quality threshold (AQT). Daily NO2 concentrations ranged from 5±3 µg/m3 in rural areas to 17±14 µgm3 in urban areas. Near traffic stations, this rose to 40±24 µg/m3 exceeding the WHO AQT. Both peaked around 06:00 and 20:00 UTC (coordinated universal time). The ambient O3 level exceeded the AQT on 20 days per month and peaked at 14:00 UTC. The main allergenic taxa from June to September was Poaceae (ie, grass pollen variety). CONCLUSION: Air pollutant levels are expected to be within accepted air quality thresholds at the Paris OPG. However, O3 concentrations may be significantly raised in very hot and clear conditions and grass pollen levels will be high, prompting a need to consider and manage this risk in susceptible individuals.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , Dióxido de Nitrógeno , Ozono , Material Particulado , Polen , Polen/química , Humanos , Contaminación del Aire/análisis , Contaminación del Aire/efectos adversos , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Ozono/análisis , Ozono/efectos adversos , Material Particulado/análisis , Paris , Dióxido de Nitrógeno/análisis , Deportes , Deportes para Personas con DiscapacidadRESUMEN
Paris and London are Europe's two megacities and both experience poor air quality with systemic breaches of the NO2 limit value. Policy initiatives have been taken to address this: some European-wide (e.g. Euro emission standards); others local (e.g. Low Emission Zone, LEZ). Trends in NOX, NO2 and particulate matter (PM10, PM2.5) for 2005-2016 in background and roadside locations; and trends in traffic increments were calculated in both cities to address their impact. Trends in traffic counts and the distribution in Euro standards for diesel vehicles were also evaluated. Linear-mixed effect models were built to determine the main determinants of traffic concentrations. There was an overall increase in roadside NO2 in 2005-2009 in both cities followed by a decrease of â¼5% year-1 from 2010. Downward trends were associated with the introduction of Euro V heavy vehicles. Despite NO2 decreasing, at current rates, roads will need 20 (Paris) and 193 years (London) to achieve the European Limit Value (40⯵gâ¯m-3 annual mean). Euro 5 light diesel vehicles were associated with the decrease in roadside PM10. An increase in motorcycles in London since 2010 contributed to the lack of significant trend in PM2.5 roadside increment in 2010-16.