Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
2.
JAMA Ophthalmol ; 142(3): 226-233, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38329740

RESUMEN

Importance: Deep learning image analysis often depends on large, labeled datasets, which are difficult to obtain for rare diseases. Objective: To develop a self-supervised approach for automated classification of macular telangiectasia type 2 (MacTel) on optical coherence tomography (OCT) with limited labeled data. Design, Setting, and Participants: This was a retrospective comparative study. OCT images from May 2014 to May 2019 were collected by the Lowy Medical Research Institute, La Jolla, California, and the University of Washington, Seattle, from January 2016 to October 2022. Clinical diagnoses of patients with and without MacTel were confirmed by retina specialists. Data were analyzed from January to September 2023. Exposures: Two convolutional neural networks were pretrained using the Bootstrap Your Own Latent algorithm on unlabeled training data and fine-tuned with labeled training data to predict MacTel (self-supervised method). ResNet18 and ResNet50 models were also trained using all labeled data (supervised method). Main Outcomes and Measures: The ground truth yes vs no MacTel diagnosis is determined by retinal specialists based on spectral-domain OCT. The models' predictions were compared against human graders using accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), area under precision recall curve (AUPRC), and area under the receiver operating characteristic curve (AUROC). Uniform manifold approximation and projection was performed for dimension reduction and GradCAM visualizations for supervised and self-supervised methods. Results: A total of 2636 OCT scans from 780 patients with MacTel and 131 patients without MacTel were included from the MacTel Project (mean [SD] age, 60.8 [11.7] years; 63.8% female), and another 2564 from 1769 patients without MacTel from the University of Washington (mean [SD] age, 61.2 [18.1] years; 53.4% female). The self-supervised approach fine-tuned on 100% of the labeled training data with ResNet50 as the feature extractor performed the best, achieving an AUPRC of 0.971 (95% CI, 0.969-0.972), an AUROC of 0.970 (95% CI, 0.970-0.973), accuracy of 0.898%, sensitivity of 0.898, specificity of 0.949, PPV of 0.935, and NPV of 0.919. With only 419 OCT volumes (185 MacTel patients in 10% of labeled training dataset), the ResNet18 self-supervised model achieved comparable performance, with an AUPRC of 0.958 (95% CI, 0.957-0.960), an AUROC of 0.966 (95% CI, 0.964-0.967), and accuracy, sensitivity, specificity, PPV, and NPV of 90.2%, 0.884, 0.916, 0.896, and 0.906, respectively. The self-supervised models showed better agreement with the more experienced human expert graders. Conclusions and Relevance: The findings suggest that self-supervised learning may improve the accuracy of automated MacTel vs non-MacTel binary classification on OCT with limited labeled training data, and these approaches may be applicable to other rare diseases, although further research is warranted.


Asunto(s)
Aprendizaje Profundo , Telangiectasia Retiniana , Humanos , Femenino , Persona de Mediana Edad , Masculino , Tomografía de Coherencia Óptica/métodos , Estudios Retrospectivos , Enfermedades Raras , Telangiectasia Retiniana/diagnóstico por imagen , Aprendizaje Automático Supervisado
3.
Sci Rep ; 11(1): 17085, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34429468

RESUMEN

We present a deep learning approach towards the large-scale prediction and analysis of bird acoustics from 100 different bird species. We use spectrograms constructed on bird audio recordings from the Cornell Bird Challenge (CBC)2020 dataset, which includes recordings of multiple and potentially overlapping bird vocalizations with background noise. Our experiments show that a hybrid modeling approach that involves a Convolutional Neural Network (CNN) for learning the representation for a slice of the spectrogram, and a Recurrent Neural Network (RNN) for the temporal component to combine across time-points leads to the most accurate model on this dataset. We show results on a spectrum of models ranging from stand-alone CNNs to hybrid models of various types obtained by combining CNNs with other CNNs or RNNs of the following types: Long Short-Term Memory (LSTM) networks, Gated Recurrent Units (GRU), and Legendre Memory Units (LMU). The best performing model achieves an average accuracy of 67% over the 100 different bird species, with the highest accuracy of 90% for the bird species, Red crossbill. We further analyze the learned representations visually and find them to be intuitive, where we find that related bird species are clustered close together. We present a novel way to empirically interpret the representations learned by the LMU-based hybrid model which shows how memory channel patterns change over time with the changes seen in the spectrograms.


Asunto(s)
Aves/clasificación , Aprendizaje Profundo , Vocalización Animal/clasificación , Animales , Aves/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA