Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Curr Pharm Des ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38963114

RESUMEN

INTRODUCTION: Luteolin (LUT), a naturally occurring flavonoid found in vegetables, fruits, and herbal medicines, has been extensively studied for its pharmacological activities, including anti-proliferative and anticancer effects on various cancer lines. It also exhibits potent antioxidant properties and pro-apoptotic activities against human cancers. However, its therapeutic potential is hindered by its poor solubility in water (5 µg/ml at 45°C) and low bioavailability. This research on the development of luteolin-loaded nanocarrier aims to overcome these limitations, thereby opening up new possibilities in cancer treatment. METHODS: This paper covers several nanoformulations studied to increase the solubility and bioavailability of LUT. The physicochemical characteristics of the nanoformulation that influence luteolin's solubility and bioavailability have been the subject of more in-depth investigation. Furthermore, it examines how LUT's anti-inflammatory and antioxidant properties aid in lessening the side effects of chemotherapy. RESULTS: Most nanoformulations, including phytosomes, lipid nanoparticles, liposomes, protein nanoparticles, polymer micelles, nanoemulsions, and metal nanoparticles, have shown promising results in improving the solubility and bioavailability of LUT. This is a significant step forward in enhancing the therapeutic potential of LUT in cancer treatment. Furthermore, the study found that LUT's ability to scavenge free radicals can significantly reduce the side effects of cancer treatment, further highlighting its potential to improve patient outcomes. CONCLUSION: Nanoformulations, because of their unique surface and physiochemical properties, improve the solubility and bioavailability of LUT. However, poor in-vitro and in-vivo correlation and scalability of nanoformulations need to be addressed to achieve good clinical performance of LUT in oncology.

2.
Int J Biol Macromol ; 273(Pt 2): 133220, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38897506

RESUMEN

Artemisinin and its derivatives have been commonly used to treat malaria. However, the emergence of resistance against artemisinin derivatives has posed a critical challenge in malaria management. In the present study, we have proposed a combinatorial approach, utilizing pH-responsive acetal-dextran nanoparticles (Ac-Dex NPs) as carriers for the delivery of withaferin-A (WS-3) and artesunate (Art) to improve treatment efficacy of malaria. The optimized WS-3 and Art Ac-Dex NPs demonstrated enhanced pH-responsive release profiles under parasitophorous mimetic conditions (pH 5.5). Computational molecular modeling reveals that Ac-Dex's polymeric backbone strongly interacts with merozoite surface protein-1 (MSP-1), preventing erythrocyte invasion. In-vitro antimalarial activity of drug-loaded Ac-Dex NPs reveals a 1-1.5-fold reduction in IC50 values compared to pure drug against the 3D7 strain of Plasmodium falciparum. Treatment with WS-3 Ac-Dex NPs (100 mg/kg) and Art Ac-Dex NPs (30 mg/kg) to Plasmodium berghei-infected mice resulted in 78.11 % and 100 % inhibition of parasitemia. Notably, the combination therapy comprised of Art and WS-3 Ac-Dex NPs achieved complete inhibition of parasitemia even at a half dose of Art, indicating the synergistic potential of the combinations. However, further investigations are necessary to confirm the safety and effectiveness of WS-3 and Art Ac-Dex NPs for their successful clinical implications.


Asunto(s)
Antimaláricos , Artesunato , Dextranos , Malaria , Nanopartículas , Witanólidos , Artesunato/química , Artesunato/farmacología , Artesunato/uso terapéutico , Nanopartículas/química , Animales , Antimaláricos/química , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Concentración de Iones de Hidrógeno , Ratones , Dextranos/química , Malaria/tratamiento farmacológico , Witanólidos/química , Witanólidos/farmacología , Portadores de Fármacos/química , Plasmodium berghei/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Artemisininas/farmacología , Artemisininas/química , Liberación de Fármacos , Polímeros/química
3.
Int J Pharm ; 660: 124311, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38848798

RESUMEN

The challenges in treating oral cancer include the limited effectiveness and systemic side effects of conventional chemotherapy and radiation therapy. Hyaluronic acid (HA) based Glycyrrhizin (GL) and Methotrexate (MT) loaded localized delivery systems, specifically nanofiber (NF) based platforms, were developed to address these challenges. The electrospinning method was used for the successful fabrication of a homogenous NF membrane and characterized for morphology, drug entrapment efficiency, tensile strength, and ex-vivo mucoadhesive study. Also, it was evaluated for in-vitro drug release profile, ex-vivo drug permeability, in-vitro anti-inflammatory, apoptosis assay by MTT and flow, and against specific cell lines in order to determine their potential for therapeutic use. Superior tensile breaking force (50 g), mucoadhesive strength of 153 gm/cm2, drug permeability, and releasing properties of designed NF, making them perfect requirements for oral cavity delivery. The anticancer potential of MT in the MTT assay and flow cytometry analysis was significantly increased in oral epidermal carcinoma cell (KB cell) for drug-loaded NF with 63.97 ± 1.99 % apoptosis, at 24 h. With these incorporated, GL with MT in NF had an anti-inflammatory potential, also demonstrated in-vitro and in-vivo. In the Ehrlich Ascites Carcinoma (EAC) induced mice model, the optimal formulation's shows better potential for tumor regression when comparing the developed NF formulation to the drugs. Experimental results show that by lowering mucositis-related inflammation and enhancing the effectiveness of oral cancer treatment, a developed nanofiber-based local drug delivery system offers a feasible strategy for managing oral cancer.


Asunto(s)
Apoptosis , Liberación de Fármacos , Ácido Glicirrínico , Ácido Hialurónico , Metotrexato , Neoplasias de la Boca , Nanofibras , Ácido Hialurónico/química , Nanofibras/química , Animales , Metotrexato/administración & dosificación , Metotrexato/química , Metotrexato/farmacología , Neoplasias de la Boca/tratamiento farmacológico , Humanos , Ácido Glicirrínico/química , Ácido Glicirrínico/administración & dosificación , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Ratones , Masculino , Portadores de Fármacos/química , Antiinflamatorios/administración & dosificación , Antiinflamatorios/química , Antiinflamatorios/farmacología
4.
ACS Omega ; 9(22): 23634-23648, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38854540

RESUMEN

Tinospora cordifolia (Willd.) Miers (Menispermaceae) is a traditional rejuvenator and a conventional medicine used to manage oxidative stress-related diseases, including those associated with the central nervous system. Decreased dextromethorphan (DEM) metabolism is necessary for high bioavailability and application against Alzheimer's disease (AD). Since T. cordifolia stem extract (TCE) can potentially inhibit several metabolic enzymes, it can also enhance dextromethorphan bioavailability. This study investigates the potential of TCE to improve DEM's bioavailability and efficacy for the management of AD. In silico analysis was carried out to find the inhibition potential of phytocomponents of T. cordifolia for CYP2D6 and CYP3A4. The LC-MS method was revalidated for the analysis of DEM and metabolite dextrorphan (DEX) in the presence of quinidine (QN). The ratio of DEM to DEX was estimated with varying doses of TCE following pharmacokinetic analysis. Network pharmacology analysis was carried out to understand the complementary potential of phytocomponents. This was further validated in the scopolamine-induced dementia model through behavioral and histopathological analyses. TCE (100 mg/kg) for 14 days increased the DEM to DEX ratio by 2.8-fold compared to QN treatment. While T max was comparable to that of QN treatment at this dose (100 mg/kg) of TCE, it increased significantly at the higher dose (400 mg/kg) of TCE pretreatment. All other pharmacokinetic parameters were also enhanced at this dose with a 4.7-fold increase in DEM/DEX compared with QN. Network pharmacology analysis indicated the ability of TCE to target multiple factors associated with AD. Furthermore, it improved spatial memory and reduced hyperactivity in rodents better than the combination of QN and DEM.

5.
Nat Commun ; 15(1): 4517, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806479

RESUMEN

Networks of nanowires, nanotubes, and nanosheets are important for many applications in printed electronics. However, the network conductivity and mobility are usually limited by the resistance between the particles, often referred to as the junction resistance. Minimising the junction resistance has proven to be challenging, partly because it is difficult to measure. Here, we develop a simple model for electrical conduction in networks of 1D or 2D nanomaterials that allows us to extract junction and nanoparticle resistances from particle-size-dependent DC network resistivity data. We find junction resistances in porous networks to scale with nanoparticle resistivity and vary from 5 Ω for silver nanosheets to 24 GΩ for WS2 nanosheets. Moreover, our model allows junction and nanoparticle resistances to be obtained simultaneously from AC impedance spectra of semiconducting nanosheet networks. Through our model, we use the impedance data to directly link the high mobility of aligned networks of electrochemically exfoliated MoS2 nanosheets (≈ 7 cm2 V-1 s-1) to low junction resistances of ∼2.3 MΩ. Temperature-dependent impedance measurements also allow us to comprehensively investigate transport mechanisms within the network and quantitatively differentiate intra-nanosheet phonon-limited bandlike transport from inter-nanosheet hopping.

6.
AAPS PharmSciTech ; 25(5): 106, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724834

RESUMEN

The primary factor underlying the virulence of Candida albicans is its capacity to form biofilms, which in turn leads to recurrent complications. Over-the-counter antifungal treatments have proven ineffective in eliminating fungal biofilms and the inflammatory cytokines produced during fungal infections. Chitosan nanoparticles offer broad and versatile therapeutic potential as both antifungal agents and carriers for antifungal drugs to combat biofilm-associated Candida infections. In our study, we endeavoured to develop chitosan nanoparticles utilising chitosan and the antifungal crosslinker phytic acid targeting C. albicans. Phytic acid, known for its potent antifungal and anti-inflammatory properties, efficiently crosslinks with chitosan. The nanoparticles were synthesised using the ionic gelation technique and subjected to analyses including Fourier transform infrared spectroscopy, dynamic light scattering, and zeta potential analysis. The synthesised nanoparticles exhibited dimensions with a diameter (Dh) of 103 ± 3.9 nm, polydispersity index (PDI) of 0.33, and zeta potential (ZP) of 37 ± 2.5 mV. These nanoparticles demonstrated an antifungal effect with a minimum inhibitory concentration (MIC) of 140 ± 2.2 µg/mL, maintaining cell viability at approximately 90% of the MIC value and reducing cytokine levels. Additionally, the nanoparticles reduced ergosterol content and exhibited a 62% ± 1.2 reduction in biofilm susceptibility, as supported by colony-forming unit (CFU) and XTT assays-furthermore, treatment with nanoparticles reduced exopolysaccharide production and decreased secretion of aspartyl protease by C. albicans. Our findings suggest that the synthesised nanoparticles effectively combat Candida albicans infections. In vivo studies conducted on a mouse model of vaginal candidiasis confirmed the efficacy of the nanoparticles in combating fungal infections in vivo.


Asunto(s)
Antiinflamatorios no Esteroideos , Antifúngicos , Biopelículas , Candida albicans , Candidiasis Vulvovaginal , Quitosano , Reactivos de Enlaces Cruzados , Nanopartículas , Ácido Fítico , Biopelículas/efectos de los fármacos , Ácido Fítico/química , Ácido Fítico/farmacología , Ácido Fítico/uso terapéutico , Reactivos de Enlaces Cruzados/química , Reactivos de Enlaces Cruzados/farmacología , Reactivos de Enlaces Cruzados/uso terapéutico , Quitosano/química , Quitosano/farmacología , Quitosano/uso terapéutico , Nanopartículas/química , Nanopartículas/uso terapéutico , Antifúngicos/química , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Pruebas de Sensibilidad Microbiana , Citocinas/inmunología , Candida albicans/efectos de los fármacos , Candida albicans/patogenicidad , Femenino , Animales , Ratones , Candidiasis Vulvovaginal/tratamiento farmacológico , Candidiasis Vulvovaginal/metabolismo , Vagina/microbiología
7.
AAPS PharmSciTech ; 25(4): 85, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605158

RESUMEN

Cervical cancer (CC) is the fourth leading cancer type in females globally. Being an ailment of the birth canal, primitive treatment strategies, including surgery, radiation, or laser therapy, bring along the risk of infertility, neonate mortality, premature parturition, etc. Systemic chemotherapy led to systemic toxicity. Therefore, delivering a smaller cargo of therapeutics to the local site is more beneficial in terms of efficacy as well as safety. Due to the regeneration of cervicovaginal mucus, conventional dosage forms come with the limitations of leaking, the requirement of repeated administration, and compromised vaginal retention. Therefore, these days novel strategies are being investigated with the ability to combat the limitations of conventional formulations. Novel carriers can be engineered to manipulate bioadhesive properties and sustained release patterns can be obtained thus leading to the maintenance of actives at therapeutic level locally for a longer period. Other than the purpose of CC treatment, these delivery systems also have been designed as postoperative care where a certain dose of antitumor agent will be maintained in the cervix postsurgical removal of the tumor. Herein, the most explored localized delivery systems for the treatment of CC, namely, nanofibers, nanoparticles, in situ gel, liposome, and hydrogel, have been discussed in detail. These carriers have exceptional properties that have been further modified with the aid of a wide range of polymers in order to serve the required purpose of therapeutic effect, safety, and stability. Further, the safety of these delivery systems toward vital organs has also been discussed.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias del Cuello Uterino , Femenino , Recién Nacido , Humanos , Neoplasias del Cuello Uterino/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Liposomas , Hidrogeles
8.
J Ethnopharmacol ; 328: 117991, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38460574

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Glinus oppositifolius (L.) Aug. DC. belongs to the family Molluginaceae, an annual prostrate herb traditionally used to treat inflammations, arthritis, malarial, wounds, fevers, diarrhoea, cancer, stomach discomfort, jaundice, and intestinal parasites. However, the anti-arthritic activity of the aerial part has still not been reported. AIM OF THE STUDY: To investigate the antioxidant and anti-arthritic activity of G. oppositifolius in Complete Freund's Adjuvant (CFA) induced rats. MATERIALS AND METHODS: The dried aerial parts of this plant material were defatted with n-hexane and extracted by methanol using a soxhlet apparatus. The in vitro anti-arthritic activity of methanolic extract of G. oppositifolius (MEGO) was evaluated in protein denaturation, membrane stabilization, and inhibition of proteinase assay at 25, 50, 100, 200, and 400 µg/ml concentrations. Female Wistar rats were immunized sub-dermally into the right hind paw with 0.1 ml of CFA. Rats were administered with MEGO at doses of 200 and 400 mg/kg once daily for fourteen days after arthritis induction. Assessment of arthritis was performed by measuring paw diameter, arthritic index, arthritic score, body weight, organ weight, and hematological and biochemical parameters, followed by the analysis of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), interleukin-1-beta (IL-1ß), cyclooxygenase-2 (COX-2), interleukin 13 (IL-13) and interleukin 10 (IL-10) and histopathological study. In vivo antioxidant effect was investigated in enzymatic assays. The presence of phytoconstituents was analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) and Liquid Chromatography-Mass Spectrometry (LC-MS), respectively. In silico molecular docking study of the compounds was carried out against COX-2, IL-1ß, IL-6, and TNF-α using AutoDock 4.2 and BIOVIA-Discovery Studio Visualizer software. RESULTS: MEGO's in vitro anti-arthritic activity showed dose-dependent inhibition of protein denaturation, membrane stabilization, and proteinase inhibition, followed by significant in vivo anti-arthritic activity. The rats treated with MEGO showed tremendous potential in managing arthritis-like symptoms by restoring hematological, biochemical, and histological changes in CFA-induced rats. MEGO (200 and 400 mg/kg) showed a significant alleviation in the levels of hyper expressed inflammatory mediators (TNF-α, IL-1ß, and IL-6) and oxidative stress (SOD, CAT, GSH, and LPO) in CFA-induced rats. Spergulagenin-A as identified by LC-MS analysis, exhibited the highest binding affinity against COX-2 (-8.6), IL-1ß (7.2 kcal/mol), IL-6 (-7.4 kcal/mol), and TNF-α (-6.5 kcal/mol). CONCLUSIONS: Provided with the comprehensive investigation, methanolic extract of G. oppositifolius against arthritic-like condition is a proof of concept that revalidates its ethnic claim. The presence of Spergulagenin-A might be responsible for the anti-arthritic activity.


Asunto(s)
Artritis Experimental , Molluginaceae , Ratas , Animales , Factor de Necrosis Tumoral alfa , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Interleucina-6 , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Ratas Wistar , Ciclooxigenasa 2 , Simulación del Acoplamiento Molecular , Quimiometría , Artritis Experimental/inducido químicamente , Artritis Experimental/tratamiento farmacológico , Metanol/química , Antioxidantes/uso terapéutico , Interleucina-13 , Péptido Hidrolasas , Componentes Aéreos de las Plantas
9.
AAPS PharmSciTech ; 25(3): 57, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472545

RESUMEN

Psoriasis is a complex and persistent autoimmune skin disease. The present research focused on the therapeutic evaluation of betulin-loaded nanostructured lipid carriers (BE-NLCs) towards managing psoriasis. The BE-NLCs were synthesized using the emulsification cum solidification method, exhibiting a spherical shape with a particle size of 183.5±1.82nm and a narrow size distribution window (PDI: 0.142±0.05). A high zeta potential -38.64±0.05mV signifies the relative stability of the nano-dispersion system. BE-NLCs show a drug loading and entrapment efficiency of 47.35±3.25% and 87.8±7.86%, respectively. In vitro release study, BE NLCs show a cumulative percentage release of 90.667±5.507% over BE-sol (57.334±5.03%) and BD-oint (42±4.58%) for 720min. In an ex vivo 24-h permeation study, % cumulative amount permeated per cm2 was found to be 55.667±3.33% from BE-NLCs and 32.012±3.26% from BE-sol, demonstrating a better permeability of 21.66% when compared to the standard formulation BD-oint. The in vivo anti-psoriatic activity in the IMQ-induced model shows topical application of BE-sol, BE-NLCs, and BD-oint resulted in recovery rates of 56%, 82%, and 65%, respectively, based on PASI (Psoriasis Area and Severity Index) score. Notably, BE-NLCs demonstrated a more significant reduction in spleen mass, indicating attenuation of the local innate immune system in psoriatic mice. Reductions in TNF-α, IL-6, and IL-17 levels were observed in both BE-sol and BE-NLCs groups compared to the disease control (DC) group, with BE-NLCs exhibiting superior outcomes (74.05%, 44.76%, and 49.26% reduction, respectively). Soy lecithin and squalene-based NLCs could be better carrier system for the improvement of the therapeutic potential of BE towards management of psoriasis.


Asunto(s)
Ácido Betulínico , Nanoestructuras , Psoriasis , Ratones , Animales , Imiquimod/efectos adversos , Portadores de Fármacos/uso terapéutico , Psoriasis/tratamiento farmacológico , Lípidos , Tamaño de la Partícula
10.
AAPS PharmSciTech ; 25(2): 31, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326518

RESUMEN

Drug delivery to the buccal mucosa is one of the most convenient ways to treat common mouth problems. Here, we propose a spray-dried re-dispersible mucoadhesive controlled release gargle formulation to improve the efficacy of chlorhexidine. The present investigation portrays an approach to get stable and free-flowing spray-dried porous aggregates of chlorhexidine-loaded sodium alginate nanoparticles. The ionic gelation technique aided with the chlorhexidine's positive surface charge-based crosslinking, followed by spray drying of the nanoparticle's dispersion in the presence of lactose- and leucine-yielded nano-aggregates with good flow properties and with a size range of about 120-350 nm. Provided with the high entrapment efficiency (87%), the particles showed sustained drug release behaviors over a duration of 10 h, where 87% of the released drug got permeated within 12 h. The antimicrobial activity of the prepared formulation was tested on S. aureus, provided with a higher zone of growth inhibition than the marketed formulation. Aided with an appropriate mucoadhesive strength, this product exhibited extended retention of nanoparticles in the throat region, as shown by in vivo imaging results. In conclusion, the technology, provided with high drug retention and extended effect, could be a potential candidate for treating several types of throat infections.


Asunto(s)
Clorhexidina , Faringe , Staphylococcus aureus , Sistemas de Liberación de Medicamentos/métodos , Preparaciones de Acción Retardada , Antisépticos Bucales , Tamaño de la Partícula
11.
Nanoscale ; 16(5): 2169-2184, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38206133

RESUMEN

Stimuli-responsive materials have gained significant recent interest owing to their versatility and wide applications in fields ranging from materials science to biology. In the majority of examples, external stimuli, including light, act as a remote source of energy to depolymerize/deconstruct certain nanostructures or provide energy for exploring their functional features. However, there is little emphasis on the creation and precise control of these materials. Although significant progress has been made in the last few decades in understanding the pros and cons of various directional non-covalent interactions and their specific molecular recognition ability, it is only in the recent past that the focus has shifted toward controlling the dimension, dispersity, and other macroscopic properties of supramolecular assemblies. Control over the morphology of supramolecular polymers is extremely crucial not only for material properties they manifest but also for effective interactions with biological systems for their potential application in the field of biomedicine. This could effectively be achieved using photoirradiation which has been demonstrated by some recent reports. The concept as such offers a broad scope for designing versatile stimuli-responsive supramolecular materials with precise structure-property control. However, there has not yet been a compilation that focuses on the present subject of employing light to impact and regulate the morphology of supramolecular polymers or categorize the functional motif for easy understanding. In this review, we have collated recent examples of how light irradiation can tune the morphology and nanostructures of supramolecular polymers and categorized them based on their chemical transformation such as cis-trans isomerization, cycloaddition, and photo-cleavage. We have also established a direct correlation among the structures of the building blocks, mesoscopic properties and functional behavior of such materials and suggested future directions.

12.
Pharm Nanotechnol ; 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38173065

RESUMEN

BACKGROUND: Dutasteride is approximately three times more potent than finasteride in treating alopecia. For reducing systemic exposure to dihydrotestosterone (DHT), researchers have shown special interest in developing topical formulations for treating androgenic alopecia. Dutasteride emulsification may lead to good skin penetration and improved availability in different lipophilic skin environments. OBJECTIVES: This study aimed to encapsulate the drug into the lipidic carrier system for better local availability in the scalp skin, develop and evaluate nanoemulgel of dutasteride to ensure efficient topical administration, and perform the in-vivo activity of the developed gel for improved efficacy against alopecia. METHODS: Dutasteride-loaded nanoemulsion was prepared by a high-speed homogenizer, followed by thickening of the dispersion using Carbopol 934. Skin permeation and accumulation were investigated in the excised skin of male Swiss albino mice. The nanoemulgel was characterized based on pH, stress stability, viscosity, and hardness. RESULTS: The optimized dutasteride-loaded nanoemulsion had a size of 252.33 ± 8.59 nm, PDI of 0.205 ± 0.60, and drug content of 98.65 ± 1.78%. Stress stability was performed was well observed in nanoemulsion formulation. Nanoemulgel evaluation results were as follows: pH 5-6 was desirable for topical application, hardness was 43 gm, and spreadability was 79 gm with in vitro release of nanoemulgel at 91.98% and permeation study at 13.67%. CONCLUSION: The in vivo studies demonstrated the growth of newer hair follicles and increased hair diameter and length in dutasteride-loaded nanoemulgel-treated alopecia animals compared to the marketed sample and testosterone-treated group. Provided with the same and long-term storage stability, the developed formulation is supposed to offer a good option for the topical administration of dutasteride in treating androgenic alopecia.

13.
Int J Biol Macromol ; 255: 128212, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37989434

RESUMEN

Bacterial vaginosis (BV) is a recurring infection that is difficult to treat due to the limited bioavailability of antimicrobials. In this study, Metronidazole (MTZ)-loaded chitosan nanoparticles (MCSNP) were synthesized employing phytic acid (PA) as a crosslinking agent for treating bacterial vaginosis. The prepared MCSNPs were characterized for size, shape, surface charge, compatibility, cytotoxicity, biofilm inhibition, and in-vitro/in-vivo antimicrobial activities. Morphological examination revealed that nanoparticles generated from 0.535 % w/v chitosan and 0.112 % w/v PA were non-spherical, discontinuous, and irregular, with zeta potential ranging from 25.00 ± 0.45 to 39 ± 0.7. The results of DSC and XRD demonstrated no change in the physical state of the drug in the finished formulation. The optimized formulation demonstrates a cumulative drug release of about 98 ± 1.5 % within 8 h. Antimicrobial studies demonstrated that the optimized formulation had enhanced efficacy against acid-adapted BV pathogens, with a MIC value of 0.9 ± 0.1 µg/mL. Compared to the MTZ alone, the in-vivo antibacterial results of in the case of developed nanoparticles showed a four-fold reduction in bacterial count in female Swiss albino mice. Based on the experimental findings, it was concluded that MCSNPs, due to their excellent physiochemical and antibacterial properties, could serve as a potential topical alternative for treating BV.


Asunto(s)
Quitosano , Nanopartículas , Vaginosis Bacteriana , Animales , Femenino , Ratones , Antibacterianos/química , Quitosano/química , Portadores de Fármacos/química , Metronidazol/farmacología , Nanopartículas/química , Ácido Fítico , Polielectrolitos , Vaginosis Bacteriana/tratamiento farmacológico
14.
J Biomol Struct Dyn ; 42(1): 528-549, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37087726

RESUMEN

Multidrug resistance episodes in malaria increased from 3.9% to 20% from 2015 to 2019. Synchronizing the clinical manifestation in chronological sequence led to a unique impression on glucose demand (increased up to 100-fold) by the parasite-infected RBCs. Hence, restriction in the glucose uptake to parasite-infected RBCs could be an alternative approach to conquer the global burden of malaria to a greater extent. A C28 steroidal lactone Withaferin A (WS-3) isolated from Withania somnifera leave extract shows better thermodynamically stable interactions with the glucose transporters (GLUT-1 and PfHT) to standard drugs metformin and lopinavir. MD simulations for a trajectory period of 100 ns reflect stable interactions with the interactive amino acid residues such as Pro141, Gln161, Gln282, Gln283, Trp388, Phe389, and Phe40, Asn48, Phe85, His168, Gln169, Asn311 which potentiating inhibitory activity of WS-3 against GLUT-1 and PfHT respectively. WS-3 was non-hemotoxic (%hemolysis <5%) for a high concentration of up to 1 mg/ml in the physiological milieu. However, the %hemolysis significantly increased up to 30.55 ± 0.929% in a parasitophorous simulated environment (pH 5.0). Increased hemolysis of WS-3 could be due to the production of ROS in an acidic environment. Further, the inhibitory activity of WS-3 against both glucose transporters was supported with flow cytometry-based analysis of parasite-infected RBCs. Results show that WS-3 has low mean fluorescence intensities for both target proteins compared to conventional drugs, suggesting a potential sugar transporter inhibitor against GLUT-1 and PfHT for managing malaria. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Malaria , Withania , Withania/química , Hemólisis , Citometría de Flujo , Malaria/tratamiento farmacológico , Extractos Vegetales/farmacología , Glucosa/metabolismo
15.
Microb Pathog ; 186: 106494, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38065294

RESUMEN

Bacterial vaginosis (BV) is a recurring, chronic infection that is difficult to treat due to the limited bioavailability of antimicrobials within vaginal epithelial cells. Vaginal administration, because of lower dosing and systemic exposure offers a viable option for treating vaginal infections. In this study, Metronidazole-loaded chitosan nanoparticles were synthesised employing borax (BX) or tannic acid (TA) as an antimicrobial crosslinking agent for treating BV. The prepared NPs were characterized for various physical, physicochemical, pharmaceutical, thermal and antibacterial properties. Morphological investigation revealed that nanoparticles prepared from 0.5 % w/v chitosan, 1.2 % w/v BX, and 0.4 % w/v metronidazole (MTZ) were non-spherical, with particle sizes of 377.4 ± 37.3 nm and a zeta potential of 34 ± 2.1 mV. The optimised formulation has MIC values of 24 ± 0.5 and 59 ± 0.5 µg/mL, against Escherichia coli (E.coli) and Candida albicans (C.albicans) respectively. The results of DSC and XRD demonstrated no change in the physical state of the drug in the finished formulation. Under simulated vaginal fluid, the optimised formulation demonstrates a cumulative drug release of about 90 % within 6h. The prepared borax crosslinked NPs exhibit anti-fungal activities by inhibiting ergosterol synthesis. The in-vivo antibacterial data indicated a comparable reduction in bacterial count compared to the marketed formulation in female Swiss albino mice treated with optimised nanoparticles. According to histopathological findings, the prepared nanoparticle was safe for vaginal use. Based on the experimental findings, it was concluded that MBCSNPs, due to their good physiochemical and antimicrobial properties, could serve as a potential topical alternative for treating BV and reducing fungal infection.


Asunto(s)
Quitosano , Nanopartículas , Vaginosis Bacteriana , Femenino , Humanos , Animales , Ratones , Metronidazol/farmacología , Vaginosis Bacteriana/tratamiento farmacológico , Quitosano/química , Portadores de Fármacos/química , Antibacterianos/química , Nanopartículas/química , Tamaño de la Partícula
16.
Assay Drug Dev Technol ; 22(1): 28-39, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38150225

RESUMEN

Glycyrrhizin (GL) is the principal constituent of Glycyrrhiza glabra, having antiallergic, anticancer, anti-inflammatory, and antimicrobial action. The reverse-phase high-performance liquid chromatography (RP-HPLC) analytical method was used to quantitatively estimate GL in a nanoformulation and validated as per International Conference on Harmonization Q2 (R1) standards. A stationary phase of the C18-HL reversed-phase column and a mobile phase of acetonitrile and water were used for effective elution. The chromatographic conditions of RP-HPLC were optimized utilizing a quality-by-design approach to accomplish the required chromatographic separation of GL from its nanoformulation with minimal experimental runs. Optimized RP-HPLC conditions for the assay method consist of acetonitrile (41%) and water, pH 1.8, balanced with phosphoric acid (0.1%) as a mobile phase with a flow rate of 1 mL/min. The retention time was found at 7.25 min, and method validation confirmed its sensitivity, preciseness, accuracy, and robustness.


Asunto(s)
Cromatografía de Fase Inversa , Ácido Glicirrínico , Cromatografía Líquida de Alta Presión/métodos , Cromatografía de Fase Inversa/métodos , Acetonitrilos/química , Agua
17.
AAPS PharmSciTech ; 24(7): 196, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37783948

RESUMEN

Despite having a wide range of therapeutic advantages, glycyrrhizin (GL) has few commercial applications due to its poor aqueous solubility. In this study, we combined the benefits of hydroxypropyl ß-cyclodextrin (HP-ßCD) supramolecular inclusion complexes and electrospun nanofibers to improve the solubility and therapeutic potential of GL. A molecular inclusion complex containing GL and HP-ßCD was prepared by lyophilization at a 1:2 molar ratio. GL and hydroxypropyl ß-cyclodextrin inclusion complexes were also incorporated into hyaluronic acid (HA) nanofibers. Prepared NF was analyzed for physical, chemical, thermal, and pharmaceutical properties. Additionally, a rat model of carrageenan-induced hind paw edema and macrophage cell lines was used to evaluate the anti-inflammatory activity of GL-HP-ßCD NF. The DSC and XRD analyses clearly showed the amorphous state of GL in nanofibers. In comparison to pure GL, GL-HP-ßCD NF displayed improved release (46.6 ± 2.16% in 5 min) and dissolution profiles (water dissolvability ≤ 6 s). Phase solubility results showed a four-fold increase in GL solubility in GL-HP-ßCD NF. In vitro experiments on cell lines showed that inflammatory markers like IL-1ß, TNF-α, and IL-6 were significantly lower in GL-HP-ßCD NF compared to pure GL (p < 0.01 and p < 0.05). According to in vivo results, the prepared nanofiber exhibits a better anti-inflammatory effect than pure GL (63.4% inhibition vs 53.7% inhibition). The findings presented here suggested that GL-HP-ßCD NF could serve as a useful strategy for improving the therapeutic effects of GL.


Asunto(s)
Ácido Glicirrínico , Nanofibras , Ratas , Animales , 2-Hidroxipropil-beta-Ciclodextrina/química , Solubilidad , Ácido Glicirrínico/farmacología , Nanofibras/química , Antiinflamatorios/farmacología
18.
ACS Appl Mater Interfaces ; 15(43): 50083-50094, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37862708

RESUMEN

Limited options exist for treatment of periodontitis; scaling and root planing (SRP) are not sufficient to eradicate P. gingivalis and the resulting inflammatory disease. Chlorhexidine (CHX), used as an adjuvant to SRP, may reduce bacterial loads but leads to pain and staining, while evidence for its efficacy is lacking. Antibiotics are effective but can lead to drug-resistance. The rising concern of antibiotic resistance limits the future use of this treatment approach. This study evaluates the efficacy of a novel superhydrophobic (SH) antimicrobial photodynamic therapy (aPDT) device as an adjuvant to SRP for the treatment of periodontitis induced in a Wistar rat in vivo model relative to CHX. The SH-aPDT device comprises an SH silicone rubber strip coated with verteporfin photosensitizer (PS), sterilized, and secured onto a tapered plastic optical fiber tip connected to a red diode laser. The superhydrophobic polydimethylsiloxane (PDMS) strips were fabricated by using a novel soluble template method that creates a medical-grade elastomer with hierarchical surface roughness without the use of nanoparticles. Superhydrophobicity minimizes direct contact of the PS-coated surface with bacterial biofilms. Upon insertion of the device tip into the pocket and energizing the laser, the device generates singlet oxygen that effectively targets and eliminates bacteria within the periodontal pocket. SH-aPDT treatment using 125 J/cm2 of red light on three consecutive days reduced P. gingivalis significantly more than SRP-CHX controls (p < 0.05). Clinical parameters significantly improved (p < 0.05), and histology and stereometry results demonstrated SH-aPDT to be the most effective treatment for improving healing and reducing inflammation, with an increase in fibroblast cells and extracellular matrix and a reduction in vascularization, inflammatory cells, and COX-2 expression. The SH-aPDT approach resulted in complete disease clearance assessed 30 days after treatment initiation with significant reduction of the periodontal pocket and re-formation of the junctional epithelium at the enamel-cementum junction. PS isolation on a SH strip minimizes the potential for bacteria to develop resistance, where the treatment may be aided by the oxygen supply retained within the SH surface.


Asunto(s)
Antiinfecciosos , Periodontitis , Fotoquimioterapia , Ratas , Animales , Ratas Wistar , Bolsa Periodontal/tratamiento farmacológico , Periodontitis/tratamiento farmacológico , Periodontitis/microbiología , Fotoquimioterapia/métodos , Antiinfecciosos/uso terapéutico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Terapia Combinada , Clorhexidina , Interacciones Hidrofóbicas e Hidrofílicas
19.
ACS Phys Chem Au ; 3(4): 348-357, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37520319

RESUMEN

Lead halide perovskite nanocrystals have received significant attention as an absorber material for designing efficient optoelectronic devices. The fundamental understanding of the hot carrier (HC) dynamics as well as its extraction in hybrid systems is essential to further boost the performance of solar cells. Herein, we have explored the electron transfer dynamics in the CsPbBr3-Au144 cluster hybrid using ultrafast transient absorption spectroscopy. Our analysis reveals faster HC cooling time (from 515 to 334 fs) and a significant drop in HC temperature from 1055 to 860 K in hybrid, suggesting the hot electron transfer from CsPbBr3 nanocrystals to the Au nanoclusters (NCs). Eventually, we observe a much faster hot electron transfer compared to the band-edge electron transfer, and 45% hot-electron transfer efficiency was achieved at 0.64 eV, above band-edge photoexcitation. Furthermore, the significant enhancement of the photocurrent to the dark current ratio in this hybrid system confirms the charge separation via the electron transfer from CsPbBr3 nanocrystals to Au144 NCs. These findings on HC dynamics could be beneficial for optoelectronic devices.

20.
Langmuir ; 39(31): 11134-11144, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37497839

RESUMEN

Although silica surfaces have been used in organic oxidations for the production of peroxides, studies of airborne singlet oxygen at interfaces are limited and have not found widespread advantages. Here, with prenyl phenol-coated silica and delivery of singlet oxygen (1O2) through the gas phase, we uncover significant selectivity for dihydrofuran formation over allylic hydroperoxide formation. The hydrophobic particle causes prenyl phenol to produce an iso-hydroperoxide intermediate with an internally protonated oxygen atom, which leads to dihydrofuran formation as well as O atom transfer. In contrast, hydrophilic particles cause prenyl phenol to produce allylic hydroperoxide, due to phenol OH hydrogen bonding with SiOH surface groups. Mechanistic insight is provided by air/nanoparticle interfaces coated with the prenyl phenol, in which product yield was 6-fold greater on the hydrophobic nanoparticles compared to the hydrophilic nanoparticles and total rate constants (ASI-kT) of 1O2 were 13-fold greater on the hydrophobic vs hydrophilic nanoparticles. A slope intersection method was also developed that uses the airborne 1O2 lifetime (τairborne) and surface-associated 1O2 lifetime (τsurf) to quantitate 1O2 transitioning from volatile to non-volatile and surface boundary (surface···1O2). Further mechanistic insights on the selectivity of the reaction of prenyl phenol with 1O2 was provided by density functional theory calculations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA