RESUMEN
INTRODUCTION AND AIM: Radioligand therapy (RLT) with 177Lu-labelled prostate specific membrane antigen ([177Lu]Lu-PSMA-X, referring with "PSMA-X" to a generic PSMA chemical compound) inhibitors has emerged as a viable treatment option in metastatic castration resistant prostate cancer patients having previously progressed on taxane and androgen receptor inhibitors. The aim of this study was to perform a systematic review and meta-analysis to assess the therapeutic efficacy of [177Lu]Lu-PSMA-X compared to taxane chemotherapy in taxane-chemo-naïve patients with metastatic castration-resistant prostate cancer. MATERIALS AND METHODS: Searches in several bibliographic databases were made using relevant key words, and articles published up to March 2024 were included. The endpoints included prostate specific antigen (PSA) response rate (RR), progression-free survival, and overall survival. Individual patient data were pooled when feasible. PSA50 was defined as the median proportion of patients achieving at least a 50% decline in serum PSA from baseline. A meta-analysis of the PSA50 response rate (proportion meta-analysis) was performed, generating pooled estimates and 95% confidence intervals (95% CI). RESULTS: From the initially selected 8,414 studies published between 2019 and 2023, 24 were included in the [177Lu]Lu-PSMA-X treated group and 17 in the taxane treated group. Our findings show that [177Lu]Lu-PSMA-X RLT yielded comparable PSA50 responses in taxane-naïve patients versus those receiving taxane chemotherapy, despite considerable study heterogeneity. Notably, the taxane-naïve group had more extensive pretreatment. CONCLUSIONS: This meta-analysis combines the largest cohorts of taxane-naïve mCRPC patients treated with [177Lu]Lu-PSMA-X RLT and taxane-treated mCRPC. It underscores similar PSA50 response rates in both groups, suggesting a potential role for [177Lu]Lu-PSMA-X RLT in taxane-naïve patients who cannot or choose not to undergo chemotherapy.
RESUMEN
Following on from the 2015 Lancet Oncology Commission on expanding global access to radiotherapy, Radiotherapy and theranostics: a Lancet Oncology Commission was created to assess the access and availability of radiotherapy to date and to address the important issue of access to the promising field of theranostics at a global level. A marked disparity in the availability of radiotherapy machines between high-income countries and low-income and middle-income countries (LMICs) has been identified previously and remains a major problem. The availability of a suitably trained and credentialled workforce has also been highlighted as a major limiting factor to effective implementation of radiotherapy, particularly in LMICs. We investigated initiatives that could mitigate these issues in radiotherapy, such as extended treatment hours, hypofractionation protocols, and new technologies. The broad implementation of hypofractionation techniques compared with conventional radiotherapy in prostate cancer and breast cancer was projected to provide radiotherapy for an additional 2·2 million patients (0·8 million patients with prostate cancer and 1·4 million patients with breast cancer) with existing resources, highlighting the importance of implementing new technologies in LMICs. A global survey undertaken for this Commission revealed that use of radiopharmaceutical therapy-other than 131I-was highly variable in high-income countries and LMICs, with supply chains, workforces, and regulatory issues affecting access and availability. The capacity for radioisotope production was highlighted as a key issue, and training and credentialling of health professionals involved in theranostics is required to ensure equitable access and availability for patient treatment. New initiatives-such as the International Atomic Energy Agency's Rays of Hope programme-and interest by international development banks in investing in radiotherapy should be supported by health-care systems and governments, and extended to accelerate the momentum generated by recognising global disparities in access to radiotherapy. In this Commission, we propose actions and investments that could enhance access to radiotherapy and theranostics worldwide, particularly in LMICs, to realise health and economic benefits and reduce the burden of cancer by accessing these treatments.
RESUMEN
Accurate segmentation of ovarian cancer (OC) lesions in PET/CT images is essential for effective disease management, yet manual segmentation for radiomics analysis is labor-intensive and time-consuming. This study introduces the application of a 3D U-Net deep learning model, leveraging advanced 3D networks, for multi-class semantic segmentation of OC in PET/CT images and assesses the stability of the extracted radiomics features. Utilizing a dataset of 3120 PET/CT images from 39 OC patients, the dataset was divided into training (70%), validation (15%), and test (15%) subsets to optimize and evaluate the model's performance. The 3D U-Net model, especially with a VGG16 backbone, achieved notable segmentation accuracy with a Dice score of 0.74, Precision of 0.76, and Recall of 0.78. Additionally, the study demonstrated high stability in radiomics features, with over 85% of PET and 84% of CT image features showing high intraclass correlation coefficients (ICCs > 0.8). These results underscore the potential of automated 3D U-Net-based segmentation to significantly enhance OC diagnosis and treatment planning. The reliability of the extracted radiomics features from automated segmentation supports its application in clinical decision-making and personalized medicine. This research marks a significant advancement in oncology diagnostics, providing a robust and efficient method for segmenting OC lesions in PET/CT images. By addressing the challenges of manual segmentation and demonstrating the effectiveness of 3D networks, this study contributes to the growing body of evidence supporting the application of artificial intelligence in improving diagnostic accuracy and patient outcomes in oncology.
RESUMEN
Although the promise of radionuclides for the diagnosis and treatment of disease was recognised soon after the discovery of radioactivity in the late 19th century, the systematic use of radionuclides in medicine only gradually increased over the subsequent hundred years. The past two decades, however, has seen a remarkable surge in the clinical application of diagnostic and therapeutic radiopharmaceuticals, particularly in oncology. This development is an exciting time for the use of theranostics in oncology, but the rapid growth of this area of nuclear medicine has created challenges as well. In particular, the infrastructure for the manufacturing and distribution of radiopharmaceuticals remains in development, and regulatory bodies are still optimising guidelines for this new class of drug. One issue of paramount importance for achieving equitable access to theranostics is building a sufficiently trained workforce in high-income, middle-income, and low-income countries. Here, we discuss the key challenges and opportunities that face the field as it seeks to build its workforce for the 21st century.
Asunto(s)
Oncología Médica , Medicina Nuclear , Radiofármacos , Humanos , Radiofármacos/uso terapéutico , Radiofármacos/provisión & distribución , Medicina Nuclear/educación , Medicina Nuclear/tendencias , Neoplasias/radioterapia , Neoplasias/terapia , Fuerza Laboral en Salud/tendenciasRESUMEN
Theranostics has become a major area of innovation and progress in cancer care over the last decade. In view of the introduction of approved therapeutics in neuroendocrine tumours and prostate cancer in the last 10 years, the ability to provide access to these treatments has emerged as a key factor in ensuring global benefits from this cancer therapy approach. In this Series paper we explore the issues that affect access to and availability of theranostic radiopharmaceuticals, including supply and regulatory issues that might affect the availability of theranostic treatments for patients with cancer.
Asunto(s)
Radiofármacos , Nanomedicina Teranóstica , Humanos , Radiofármacos/uso terapéutico , Neoplasias/terapia , Medicina de PrecisiónRESUMEN
This paper is the first of a Series on theranostics that summarises the current landscape of the radiopharmaceutical sciences as they pertain to oncology. In this Series paper, we describe exciting developments in radiochemistry and the production of radionuclides, the development and translation of theranostics, and the application of artificial intelligence to our field. These developments are catalysing growth in the use of radiopharmaceuticals to the benefit of patients worldwide. We also highlight some of the key issues to be addressed in the coming years to realise the full potential of radiopharmaceuticals to treat cancer.
Asunto(s)
Neoplasias , Radiofármacos , Humanos , Radiofármacos/uso terapéutico , Neoplasias/terapia , Neoplasias/radioterapia , Oncología Médica , Inteligencia ArtificialRESUMEN
Although radiotherapy continues to evolve as a mainstay of the oncological armamentarium, research and innovation in radiotherapy in low-income and middle-income countries (LMICs) faces challenges. This third Series paper examines the current state of LMIC radiotherapy research and provides new data from a 2022 survey undertaken by the International Atomic Energy Agency and new data on funding. In the context of LMIC-related challenges and impediments, we explore several developments and advances-such as deep phenotyping, real-time targeting, and artificial intelligence-to flag specific opportunities with applicability and relevance for resource-constrained settings. Given the pressing nature of cancer in LMICs, we also highlight some best practices and address the broader need to develop the research workforce of the future. This Series paper thereby serves as a resource for radiation professionals.
Asunto(s)
Países en Desarrollo , Neoplasias , Oncología por Radiación , Humanos , Países en Desarrollo/economía , Neoplasias/radioterapia , Oncología por Radiación/economía , Investigación Biomédica/economía , Radioterapia/economía , PobrezaRESUMEN
Spondylodiscitis, characterized by inflammation of the intervertebral disc and adjacent vertebral bodies, presents a diagnostic challenge due to its nonspecific clinical manifestations and variable imaging findings. This review examines the role of PET-CT with FDG, in the evaluation of spondylodiscitis, focusing on its utility in diagnosis, assessment of disease extent, treatment response monitoring, and prognostication. FDG PET-CT, by combining metabolic and anatomical imaging modalities, offers superior sensitivity and specificity compared to conventional imaging techniques in detecting infectious foci, distinguishing between infection and post-treatment changes, and identifying occult sources of infection. Additionally, FDG PET-CT facilitates the localization of infection, aiding in targeted biopsy and guiding surgical intervention. Moreover, quantitative PET parameters, such as standardized uptake values (SUVs), hold promise for predicting treatment response and prognosis. Despite its advantages, FDG PET-CT has limitations, including false-positive results in the setting of inflammation and limited availability in resource-constrained settings. Collaborative efforts between radiologists, nuclear medicine specialists, infectious disease specialists, and spine surgeons are essential to optimize the role of FDG PET-CT in the multidisciplinary management of spondylodiscitis. Further research is warranted to elucidate the cost-effectiveness and clinical impact of FDG PET-CT in this challenging clinical entity.
Asunto(s)
Discitis , Fluorodesoxiglucosa F18 , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Discitis/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodosRESUMEN
BACKGROUND: For cancer patient populations worldwide, the synchronous scale-up of diagnostics and treatments yields meaningful gains in survival and quality of life. Among advanced cancer therapies, radiotherapy (RT) and theranostics are key to achieving practical, high-quality, and personalized precision medicine - targeting disease manifestations of individual patients and broad populations, alike. Aiming to learn from one another across different world regions, the six country vignettes presented here depict both challenges and victories in de novo establishment or improvement of RT and theranostics infrastructure. METHODS: The International Atomic Energy Agency (IAEA) convened global RT and theranostics experts from diverse world regions and contexts to identify relevant challenges and report progress in their own six countries: Belgium, Brazil, Costa Rica, Jordan, Mongolia, and South Africa. These accounts are collated, compared, and contrasted herein. RESULTS: Common challenges persist which could be more strategically assessed and addressed. A quantifiable discrepancy entails personnel. The estimated radiation oncologists (ROs), nuclear medicine physicians (NMPs), and medical physicists (MPs for RT and nuclear medicine) per million inhabitants in the six collective countries respectively range between 2.69-38.00 ROs, 1.00-26.00 NMPs, and 0.30-3.45 MPs (Table 1), reflecting country-to-country inequities which largely match World Bank country-income stratifications. CONCLUSION: Established goals for RT and nuclear medicine advancement worldwide have proven elusive. The pace of progress could be hastened by enhanced approaches such as more sustainably phased implementation; better multinational networking to share lessons learned; routine quality and safety audits; as well as capacity building employing innovative, resource-sparing, cutting-edge technologic approaches. Bodies such as ministries of health, professional societies, and the IAEA shall serve critical roles in convening and coordinating more innovative RT and theranostics translational research, including expanding nuanced global database metrics to inform, reach, and potentiate milestones most meaningfully. POLICY SUMMARY: Aligned with WHO 25×25 NCDs target; WHA70.12 and WHA76.5 resolutions.
Asunto(s)
Neoplasias , Humanos , Neoplasias/radioterapia , Sudáfrica , Jordania , Brasil , Costa Rica , Medicina de Precisión , Radioterapia , Nanomedicina TeranósticaRESUMEN
PURPOSE: The recent development and approval of new diagnostic imaging and therapy approaches in the field of theranostics have revolutionised nuclear medicine practice. To ensure the provision of these new imaging and therapy approaches in a safe and high-quality manner, training of nuclear medicine physicians and qualified specialists is paramount. This is required for trainees who are learning theranostics practice, and for ensuring minimum standards for knowledge and competency in existing practising specialists. METHODS: To address the need for a training curriculum in theranostics that would be utilised at a global level, a Consultancy Meeting was held at the IAEA in May 2023, with participation by experts in radiopharmaceutical therapy and theranostics including representatives of major international organisations relevant to theranostics practice. RESULTS: Through extensive discussions and review of existing curriculum and guidelines, a harmonised training program for theranostics was developed, which aims to ensure safe and high quality theranostics practice in all countries. CONCLUSION: The guiding principles for theranostics training outlined in this paper have immediate relevance for the safe and effective practice of theranostics.
Asunto(s)
Medicina Nuclear , Humanos , Medicina Nuclear/educación , Nanomedicina Teranóstica , CurriculumRESUMEN
The field of nuclear medicine has witnessed significant advancements in recent years, particularly in the area of PET imaging. One such development is the use of Fibroblast Activation Protein Inhibitors (FAPI) as a novel radiotracer. FAPI PET imaging has shown promising results in various malignancies, including sarcomas, which are a diverse group of cancers originating from mesenchymal cells. This paper aims to explore the potential of FAPI PET imaging in the diagnosis, staging, and treatment monitoring of sarcomas. Several studies have demonstrated the potential of FAPI PET in sarcomas. Furthermore, FAPI PET imaging has shown potential in assessing treatment response, with changes in FAPI uptake correlating with treatment outcomes. However, there are challenges to be addressed. The heterogeneity of sarcomas, both inter- and intra-tumoral, may affect the uniformity of Fibroblast Activation Protein (FAP) expression and thus the effectiveness of FAPI PET imaging. Additionally, the optimal timing and dosage of FAPI for PET imaging in sarcomas need further investigation. In conclusion, the introduction of FAPI PET imaging represents a significant advancement in the field of nuclear medicine and oncology. The ability to target FAP, a protein overexpressed in the majority of sarcomas, offers new possibilities for the diagnosis and treatment of these complex and diverse tumors. Its potential applications in diagnosis, staging, and theranostics are vast, and on-going research continues to explore and address its limitations. As we continue to deepen our understanding of this novel imaging technique, it is hoped that FAPI PET imaging will play an increasingly important role in the fight against cancer. However, as with any new technology, further research is needed to fully understand the potential and limitations of FAPI PET imaging in the clinical setting.
Asunto(s)
Proteínas de la Membrana , Medicina Nuclear , Tomografía de Emisión de Positrones , Sarcoma , Humanos , Tomografía de Emisión de Positrones/métodos , Sarcoma/diagnóstico por imagen , Medicina Nuclear/métodos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Gelatinasas/metabolismo , Gelatinasas/antagonistas & inhibidores , Animales , Endopeptidasas , Serina Endopeptidasas/metabolismoRESUMEN
BACKGROUND: In the rapidly evolving field of nuclear medicine, the paramount importance of radiation protection, safety, and quality systems cannot be overstated. This document provides a comprehensive analysis of the intricate regulatory frameworks and guidelines, meticulously crafted and updated by national and international regulatory bodies to ensure the utmost safety and efficiency in the practice of nuclear medicine. METHODS: We explore the dynamic nature of these regulations, emphasizing their adaptability in accommodating technological advancements and the integration of nuclear medicine with other medical and scientific disciplines. RESULTS: Audits, both internal and external, are spotlighted for their pivotal role in assessing and ensuring compliance with established standards, promoting a culture of continuous improvement and excellence. We delve into the significant contributions of entities like the International Atomic Energy Agency (IAEA) and relevant professional societies in offering universally applicable guidelines that amalgamate the latest in scientific research, ethical considerations, and practical applicability. CONCLUSIONS: The document underscores the essence of international collaborations in pooling expertise, resources, and insights, fostering a global community of practice where knowledge and innovations are shared. Readers will gain an in-depth understanding of the practical applications, challenges, and opportunities presented by these regulatory frameworks and audit processes. The ultimate goal is to inspire and inform ongoing efforts to enhance safety, quality, and effectiveness in nuclear medicine globally.
Asunto(s)
Medicina Nuclear , Protección Radiológica , Medicina Nuclear/normas , Protección Radiológica/normas , Humanos , Control de Calidad , SeguridadRESUMEN
PURPOSE: The aim of this review is to give an overview of the current status of molecular image-guided surgery in gynaecological malignancies, from both clinical and technological points of view. METHODS: A narrative approach was taken to describe the relevant literature, focusing on clinical applications of molecular image-guided surgery in gynaecology, preoperative imaging as surgical roadmap, and intraoperative devices. RESULTS: The most common clinical application in gynaecology is sentinel node biopsy (SNB). Other promising approaches are receptor-target modalities and occult lesion localisation. Preoperative SPECT/CT and PET/CT permit a roadmap for adequate surgical planning. Intraoperative detection modalities span from 1D probes to 2D portable cameras and 3D freehand imaging. CONCLUSION: After successful application of radio-guided SNB and SPECT, innovation is leaning towards hybrid modalities, such as hybrid tracer and fusion of imaging approaches including SPECT/CT and PET/CT. Robotic surgery, as well as augmented reality and virtual reality techniques, is leading to application of these innovative technologies to the clinical setting, guiding surgeons towards a precise, personalised, and minimally invasive approach.
Asunto(s)
Neoplasias de los Genitales Femeninos , Imagen Molecular , Cirugía Asistida por Computador , Humanos , Femenino , Neoplasias de los Genitales Femeninos/diagnóstico por imagen , Neoplasias de los Genitales Femeninos/cirugía , Cirugía Asistida por Computador/métodos , Imagen Molecular/métodosAsunto(s)
Tumores Neuroendocrinos , Compuestos Organometálicos , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tumores Neuroendocrinos/diagnóstico por imagen , Tumores Neuroendocrinos/patología , Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos X , Imagen MolecularRESUMEN
ABSTRACT: Diagnosis and treatment of prostate cancer are complex and very challenging, being a major health care burden. The efficacy of radioligand therapy with prostate-specific membrane antigen agents has been proven beneficial in certain clinical indications. In this review, we describe management of prostate cancer patients according to current guidelines, especially focusing on the available clinical evidence for prostate-specific membrane antigen radioligand therapy.
Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Masculino , Humanos , Antígeno Prostático Específico , Neoplasias de la Próstata/radioterapiaRESUMEN
BACKGROUND: The current expansion of image-guided surgery is closely related to the role played by radio-guided surgery in supporting the sentinel node (SN) procedure during more than three decades. The so-called triple approach (lymphoscintigraphy, gamma probe detection and blue dye) was not only essential in the seminal validation of the SN procedure but also a first collective learning effort based on skill transfer and outcome-related evaluation which laid the fundaments to delineate the field of intraoperative molecular imaging (IMI) based on a similar multimodality approach and multidisciplinary practice. METHODS: These elements are also becoming valid in the current incorporation of SPECT/CT and PET/CT to existing and new protocols of IMI procedures and SN mapping concerning other clinical applications. On the other hand, there is a growing tendency to combine novel modern technologies in an allied role with gamma guidance in the operating room following the development of hybrid tracers and multimodal detection approaches. Against this background, learning initiatives are required for professionals working in this area. RESULTS: This objective has led to a group of European practitioners with large experience in SN mapping and IMI applications to give shape to a programme made up out of specific learning modules aimed to be used as a conductive thread in peripherical or centralised training instances concerning the topic. CONCLUSION: The presented work, written as a tutorial review, is placed in an available prior-art context and is primarily aimed at medical and paramedical practitioners as well as at hardware and software developers.
RESUMEN
OBJECTIVE: To create the 3D convolutional neural network (CNN)-based system that can use whole-body [18F]FDG PET for recurrence/post-therapy surveillance in ovarian cancer (OC). METHODS: In this study, 1224 image sets from OC patients who underwent whole-body [18F]FDG PET/CT at Kowsar Hospital between April 2019 and May 2022 were investigated. For recurrence/post-therapy surveillance, diagnostic classification as cancerous, and non-cancerous and staging as stage III, and stage IV were determined by pathological diagnosis and specialists' interpretation. New deep neural network algorithms, the OCDAc-Net, and the OCDAs-Net were developed for diagnostic classification and staging of OC patients using [18F]FDG PET/CT images. Examinations were divided into independent training (75%), validation (10%), and testing (15%) subsets. RESULTS: This study included 37 women (mean age 56.3 years; age range 36-83 years). Data augmentation techniques were applied to the images in two phases. There were 1224 image sets for diagnostic classification and staging. For the test set, 170 image sets were considered for diagnostic classification and staging. The OCDAc-Net areas under the receiver operating characteristic curve (AUCs) and overall accuracy for diagnostic classification were 0.990 and 0.92, respectively. The OCDAs-Net achieved areas under the receiver operating characteristic curve (AUCs) of 0.995 and overall accuracy of 0.94 for staging. CONCLUSIONS: The proposed 3D CNN-based models provide potential tools for recurrence/post-therapy surveillance in OC. The OCDAc-Net and the OCDAs-Net model provide a new prognostic analysis method that can utilize PET images without pathological findings for diagnostic classification and staging.
Asunto(s)
Fluorodesoxiglucosa F18 , Neoplasias Ováricas , Humanos , Femenino , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radiofármacos , Estudios Retrospectivos , Neoplasias Ováricas/diagnóstico por imagen , Redes Neurales de la Computación , Estadificación de NeoplasiasRESUMEN
Theranostics is an emerging field in medicine that combines diagnostics and therapeutics into a single approach. Overall, theranostics represents a promising paradigm for personalized medicine, as it allows for targeted and precise treatment based on individual patient characteristics. In nuclear medicine, theranostics involves the use of radiopharmaceuticals that have both diagnostic and therapeutic properties. Moreover, theranostics in nuclear medicine offers several advantages over traditional cancer treatments. Unlike radiotherapy, in nuclear medicine the therapy is systemic that targets both primary tumors and metastatic lesions, offering a more comprehensive treatment approach. Additionally, nuclear medicine therapy has been shown to have fewer side effects compared to traditional chemotherapy, making it a more tolerable treatment option for patients. While theranostics in nuclear medicine is still a relatively new field, it has shown promising results in the treatment of neuroendocrine tumors (NETs). One example of a theranostic approach in nuclear medicine is the use of radiolabeled somatostatin analogs for the treatment of NETs. Somatostatin is a hormone that regulates the release of other hormones in the body. It also binds to somatostatin receptors, which are highly expressed in NETs. The first step in theranostics for NETs is the diagnosis and staging of the disease using a radiolabeled somatostatin analog and PET/CT imaging. This allows for the detection of the tumor and assessment of its size and location. Once the tumor has been identified, the same radiolabeled somatostatin analog can be used as a therapeutic agent. The radiopharmaceutical delivers radiation directly to the tumor cells, which destroys them while sparing surrounding healthy tissue. This is known as peptide receptor radionuclide therapy (PRRT). The use of theranostics in NETs also involves the identification of specific somatostatin receptor subtypes that are expressed in the tumor cells. This is important as different somatostatin analogs have varying affinities for different receptor subtypes. By selecting the appropriate radiolabeled somatostatin analog, clinicians can increase the specificity of the therapy, delivering radiation to the tumor cells while minimizing damage to healthy tissue. PRRT has been shown to be effective in treating NETs, particularly those that are resistant to other forms of treatment. It can also be used in combination with other therapies, such as chemotherapy and surgery, to improve outcomes. As research continues, it is likely that theranostics in nuclear medicine will become an increasingly important tool in the fight against cancer, particularly in the context of NETs, offering personalized, targeted treatment options that improve patient outcomes.