Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Eur J Med Chem ; 265: 116097, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38157595

RESUMEN

Tridecaptins comprise a class of linear cationic lipopeptides with an N-terminal fatty acyl moiety. These 13-mer antimicrobial peptides consist of a combination of d- and l-amino acids, conferring increased proteolytic stability. Intriguingly, they are biosynthesized by non-ribosomal peptide synthetases in the same bacterial species that also produce the cyclic polymyxins displaying similar fatty acid tails. Previously, the des-acyl analog of TriA1 (termed H-TriA1) was found to possess very weak antibacterial activity, albeit it potentiated the effect of several antibiotics. In the present study, two series of des-acyl tridecaptins were explored with the aim of improving the direct antibacterial effect. At the same time, overall physico-chemical properties were modulated by amino acid substitution(s) to diminish the risk of undesired levels of hemolysis and to avoid an impairment of mammalian cell viability, since these properties are typically associated with highly hydrophobic cationic peptides. Microbiology and biophysics tools were used to determine bacterial uptake, while circular dichroism and isothermal calorimetry were used to probe the mode of action. Several analogs had improved antibacterial activity (as compared to that of H-TriA1) against Enterobacteriaceae. Optimization enabled identification of the lead compound 29 that showed a good ADMET profile as well as in vivo efficacy in a variety of mouse models of infection.


Asunto(s)
Antibacterianos , Bacterias , Péptidos , Animales , Ratones , Antibacterianos/farmacología , Antibacterianos/química , Ácidos Grasos/química , Lipopéptidos/farmacología , Lipopéptidos/química , Mamíferos , Pruebas de Sensibilidad Microbiana , Cationes/química
2.
J Biol Chem ; 299(11): 105331, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37820867

RESUMEN

The periplasmic chaperone SilF has been identified as part of an Ag(I) detoxification system in Gram-negative bacteria. Sil proteins also bind Cu(I) but with reported weaker affinity, therefore leading to the designation of a specific detoxification system for Ag(I). Using isothermal titration calorimetry, we show that binding of both ions is not only tighter than previously thought but of very similar affinities. We investigated the structural origins of ion binding using molecular dynamics and QM/MM simulations underpinned by structural and biophysical experiments. The results of this analysis showed that the binding site adapts to accommodate either ion, with key interactions with the solvent in the case of Cu(I). The implications of this are that Gram-negative bacteria do not appear to have evolved a specific Ag(I) efflux system but take advantage of the existing Cu(I) detoxification system. Therefore, there are consequences for how we define a particular metal resistance mechanism and understand its evolution in the environment.


Asunto(s)
Cobre , Escherichia coli , Sitios de Unión , Cobre/metabolismo , Escherichia coli/metabolismo , Iones/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Plata/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
3.
Sci Rep ; 12(1): 19719, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36385123

RESUMEN

Designing the architecture of L-lysine-based polymeric structures is a highly challenging task that requires careful control of the amino acid reactive groups. Conventional processes to obtain branched polylysine need several steps and the addition of specific catalysts. In the present work, to gain a better understanding and control of the formation of L-lysine-based polymers, we have investigated the correlation between the protonation state of L-lysine and the corresponding hydrothermally grown structures. The samples have been characterized by combining optical spectroscopies, such as UV-Vis, fluorescence, and synchrotron radiation circular dichroism with structural analysis by Nuclear Magnetic Resonance, Fourier Transform Infrared spectroscopy, and dynamic light scattering. We have observed that aqueous precursor solutions with alkaline pHs promote the formation of branched structures. In contrast, high pHs favour the reactivity of the ε-amino groups leading to linear structures, as shown by circular dichroism analyses. On the other hand, acidic conditions trigger the branching of the amino acid. Interestingly, the polymeric forms of L-lysine emit in the blue because the increasing number of intermolecular hydrogen bonds promote the intermolecular charge transfer responsible for the emission. Understanding the correlation between the L-lysine charged states and the polymeric structures that could form controlling the protonation-deprotonation states of the amino acid opens the route to a refined design of polypeptide systems based on L-lysine.


Asunto(s)
Péptidos , Polilisina , Polilisina/química , Dicroismo Circular , Péptidos/química , Poli A , Aminoácidos , Polímeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA