RESUMEN
AIM: Striatin (Strn) is a scaffold protein expressed in cardiomyocytes (CMs) and alteration of its expression are described in various cardiac diseases. However, the alteration underlying its pathogenicity have been poorly investigated. METHODS: We studied the role(s) of cardiac Strn gene (STRN) by comparing the functional properties of CMs, generated from Strn-KO and isogenic WT mouse embryonic stem cell lines. RESULTS: The spontaneous beating rate of Strn-KO CMs was faster than WT cells, and this correlated with a larger fast INa conductance and no changes in If. Paced (2-8 Hz) Strn-KO CMs showed prolonged action potential (AP) duration in comparison with WT CMs and this was not associated with changes in ICaL and IKr. Motion video tracking analysis highlighted an altered contraction in Strn-KO CMs; this was associated with a global increase in intracellular Ca2+, caused by an enhanced late Na+ current density (INaL) and a reduced Na+/Ca2+ exchanger (NCX) activity and expression. Immunofluorescence analysis confirmed the higher Na+ channel expression and a more dynamic microtubule network in Strn-KO CMs than in WT. Indeed, incubation of Strn-KO CMs with the microtubule stabilizer taxol, induced a rescue (downregulation) of INa conductance toward WT levels. CONCLUSION: Loss of STRN alters CMs electrical and contractile profiles and affects cell functionality by a disarrangement of Strn-related multi-protein complexes. This leads to impaired microtubules dynamics and Na+ channels trafficking to the plasma membrane, causing a global Na+ and Ca2+ enhancement.
Asunto(s)
Calcio , Miocitos Cardíacos , Animales , Miocitos Cardíacos/metabolismo , Ratones , Calcio/metabolismo , Potenciales de Acción/efectos de los fármacos , Ratones Noqueados , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Intercambiador de Sodio-Calcio/metabolismo , Intercambiador de Sodio-Calcio/genética , Células Madre Embrionarias de Ratones/metabolismo , Sodio/metabolismoRESUMEN
miR-1, the most abundant miRNA in the heart, modulates expression of several transcription factors and ion channels. Conditions affecting the heart rate, such as endurance training and cardiac diseases, show a concomitant miR-1 up- or down-regulation. Here, we investigated the role of miR-1 overexpression in the development and function of sinoatrial (SAN) cells using murine embryonic stem cells (mESC). We generated mESCs either overexpressing miR-1 and EGFP (miR1OE) or EGFP only (EM). SAN-like cells were selected from differentiating mESC using the CD166 marker. Gene expression and electrophysiological analysis were carried out on both early mES-derived cardiac progenitors and SAN-like cells and on beating neonatal rat ventricular cardiomyocytes (NRVC) over-expressing miR-1. miR1OE cells increased significantly the proportion of CD166+ SAN precursors compared to EM cells (23% vs 12%) and the levels of the transcription factors TBX5 and TBX18, both involved in SAN development. miR1OE SAN-like cells were bradycardic (1,3 vs 2 Hz) compared to EM cells. In agreement with data on native SAN cells, EM SAN-like cardiomyocytes show two populations of cells expressing either slow- or fast-activating If currents; miR1OE SAN-like cells instead have only fast-activating If with a significantly reduced conductance. Western Blot and immunofluorescence analysis showed a reduced HCN4 signal in miR-1OE vs EM CD166+ precursors. Together these data point out to a specific down-regulation of the slow-activating HCN4 subunit by miR-1. Importantly, the rate and If alterations were independent of the developmental effects of miR-1, being similar in NRVC transiently overexpressing miR-1. In conclusion, we demonstrated a dual role of miR-1, during development it controls the proper development of sinoatrial-precursor, while in mature SAN-like cells it modulates the HCN4 pacemaker channel translation and thus the beating rate.