Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
Clin Cancer Res ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150543

RESUMEN

PURPOSE: Large cell neuroendocrine carcinoma (LCNEC) is a high-grade neuroendocrine malignancy that, like small cell lung cancer (SCLC), is associated with an absence of druggable oncogenic drivers and dismal prognosis. In contrast to SCLC, however, there is little evidence to guide optimal treatment strategies which are often adapted from SCLC and non-small cell lung cancer (NSCLC) approaches. EXPERIMENTAL DESIGN: To better define the biology of LCNEC, we analyzed cell line and patient genomic data and performed immunohistochemistry and single-cell (sc)RNAseq of core needle biopsies from LCNEC patients and preclinical models. RESULTS: Here, we demonstrate that the presence or absence of YAP1 distinguishes two subsets of LCNEC. The YAP1-high subset is mesenchymal and inflamed and characterized, alongside TP53 mutations, by co-occurring alterations in CDKN2A/B and SMARCA4. Therapeutically, the YAP1-high subset demonstrates vulnerability to MEK and AXL targeting strategies, including a novel preclinical AXL CAR-T cell. Meanwhile, the YAP1-low subset is epithelial and immune-cold and more commonly features TP53 and RB1 co-mutations, similar to those observed in pure SCLC. Notably, the YAP1-low subset is also characterized by expression of SCLC subtype-defining transcription factors - especially ASCL1 and NEUROD1 - and, as expected given its transcriptional similarities to SCLC, exhibits putative vulnerabilities reminiscent of SCLC, including Delta-like ligand 3 (DLL3) and CD56 targeting, as with novel preclinical DLL3 and CD56 CAR T-cells, and DNA damage repair (DDR) inhibition. CONCLUSION: YAP1 defines distinct subsets of LCNEC with unique biology. These findings highlight the potential for YAP1 to guide personalized treatment strategies for LCNEC.

2.
Cancer Innov ; 3(3): e112, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38947760

RESUMEN

Background: Pulmonary sarcomatoid carcinoma (PSC) is a rare and aggressive subtype of non-small cell lung cancer (NSCLC), characterized by the presence of epithelial and sarcoma-like components. The molecular and immune landscape of PSC has not been well defined. Methods: Multiomics profiling of 21 pairs of PSCs with matched normal lung tissues was performed through targeted high-depth DNA panel, whole-exome, and RNA sequencing. We describe molecular and immune features that define subgroups of PSC with disparate genomic and immunogenic features as well as distinct clinical outcomes. Results: In total, 27 canonical cancer gene mutations were identified, with TP53 the most frequently mutated gene, followed by KRAS. Interestingly, most TP53 and KRAS mutations were earlier genomic events mapped to the trunks of the tumors, suggesting branching evolution in most PSC tumors. We identified two distinct molecular subtypes of PSC, driven primarily by immune infiltration and signaling. The Immune High (IM-H) subtype was associated with superior survival, highlighting the impact of immune infiltration on the biological and clinical features of localized PSCs. Conclusions: We provided detailed insight into the mutational landscape of PSC and identified two molecular subtypes associated with prognosis. IM-H tumors were associated with favorable recurrence-free survival and overall survival, highlighting the importance of tumor immune infiltration in the biological and clinical features of PSCs.

4.
Cancers (Basel) ; 16(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39061147

RESUMEN

Lung cancer is the most common cause of cancer-related death in both males and females in the U.S. and non-small-cell lung cancer (NSCLC) accounts for 85%. Although the use of first- or second-line immune checkpoint inhibitors (ICIs) exhibits remarkable clinical benefits, resistance to ICIs develops over time and dampens the efficacy of ICIs in patients. Tumor-associated neutrophils (TANs) have an important role in modulating the tumor microenvironment (TME) and tumor immune response. The major challenge in the field is to characterize the TANs in NSCLC TME and understand the link between TAN-related immunosuppression with ICI treatment response. In this review, we summarize the current studies of neutrophil interaction with malignant cells, T-cells, and other components in the TME. Ongoing clinical trials are aimed at utilizing reagents that have putative effects on tumor-associated neutrophils, in combination with ICI. Elevated neutrophil populations and neutrophil-associated factors could be potential therapeutic targets to enhance anti-PD1 treatment in NSCLC.

5.
Cancer Discov ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38975897

RESUMEN

Resistance to inactive state-selective RASG12C inhibitors frequently entails accumulation of RASGTP, rendering effective inhibition of active RAS potentially desirable. Here, we evaluated the anti-tumor activity of the RAS(ON) multi-selective tri-complex inhibitor RMC-7977 and dissected mechanisms of response and tolerance in KRASG12C-mutant NSCLC. Broad-spectrum, reversible RASGTP inhibition with or without concurrent covalent targeting of active RASG12C yielded superior and differentiated antitumor activity across diverse co-mutational KRASG12C-mutant NSCLC mouse models of primary or acquired RASG12C(ON) or (OFF) inhibitor resistance. Interrogation of time-resolved single cell transcriptional responses established an in vivo atlas of multi-modal acute and chronic RAS pathway inhibition in the NSCLC ecosystem and uncovered a regenerative mucinous transcriptional program that supports long-term tumor cell persistence. In patients with advanced KRASG12C-mutant NSCLC, the presence of mucinous histological features portended poor response to sotorasib or adagrasib. Our results have potential implications for personalized medicine and the development of rational RAS inhibitor-anchored therapeutic strategies.

6.
Trends Pharmacol Sci ; 45(6): 520-536, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38744552

RESUMEN

Immune checkpoint blockade (ICB) therapy works by inhibiting suppressive checkpoints that become upregulated after T cell activation, like PD-1/PD-L1 and CTLA-4. While the initial FDA approvals of ICB have revolutionized cancer therapies and fueled a burgeoning immuno-oncology field, more recent clinical development of new agents has been slow. Here, focusing on lung cancer, we review the latest research uncovering tumor cell intrinsic and extrinsic ICB resistance mechanisms as major hurdles to treatment efficacy and clinical progress. These include genomic and non-genomic tumor cell alterations, along with host and microenvironmental factors like the microbiome, metabolite accumulation, and hypoxia. Together, these factors can cooperate to promote immunosuppression and ICB resistance. Opportunities to prevent resistance are constantly evolving in this rapidly expanding field, with the goal of moving toward personalized immunotherapeutic regimens.


Asunto(s)
Resistencia a Antineoplásicos , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Animales , Microambiente Tumoral , Inmunoterapia/métodos
8.
Front Oncol ; 14: 1324057, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590653

RESUMEN

Accurate diagnoses are crucial in determining the most effective treatment across different cancers. In challenging cases, morphology-based traditional pathology methods have important limitations, while molecular profiling can provide valuable information to guide clinical decisions. We present a 35-year female with lung cancer with choriocarcinoma features. Her disease involved the right lower lung, brain, and thoracic lymph nodes. The pathology from brain metastasis was reported as "metastatic choriocarcinoma" (a germ cell tumor) by local pathologists. She initiated carboplatin and etoposide, a regimen for choriocarcinoma. Subsequently, her case was assessed by pathologists from an academic cancer center, who gave the diagnosis of "adenocarcinoma with aberrant expression of ß-hCG" and finally pathologists at our hospital, who gave the diagnosis of "poorly differentiated carcinoma with choriocarcinoma features". Genomic profiling detected a KRAS G13R mutation and transcriptomics profiling was suggestive of lung origin. The patient was treated with carboplatin/paclitaxel/ipilimumab/nivolumab followed by consolidation radiation therapy. She had no evidence of progression to date, 16 months after the initial presentation. The molecular profiling could facilitate diagnosing of challenging cancer cases. In addition, chemoimmunotherapy and local consolidation radiation therapy may provide promising therapeutic options for patients with lung cancer exhibiting choriocarcinoma features.

9.
Mol Cancer Ther ; 23(8): 1144-1158, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38648067

RESUMEN

We recently reported that resistance to PD-1 blockade in a refractory lung cancer-derived model involved increased collagen deposition and the collagen-binding inhibitory receptor leukocyte-associated immunoglobulin-like receptor 1 (LAIR1). Thus, we hypothesized that LAIR1 and collagen cooperated to suppress therapeutic response. In this study, we report that LAIR1 is associated with tumor stroma and is highly expressed by intratumoral myeloid cells in both human tumors and mouse models of cancer. Stroma-associated myeloid cells exhibit a suppressive phenotype and correlate with LAIR1 expression in human cancer. NGM438, a novel humanized LAIR1 antagonist mAb, elicits myeloid inflammation and allogeneic T-cell responses by binding to LAIR1 and blocking collagen engagement. Furthermore, a mouse-reactive NGM438 surrogate antibody sensitized refractory KP mouse lung tumors to anti-PD-1 therapy and resulted in increased intratumoral CD8+ T-cell content and inflammatory gene expression. These data place LAIR1 at the intersection of stroma and suppressive myeloid cells and support the notion that blockade of the LAIR1/collagen axis can potentially address resistance to checkpoint inhibitor therapy in the clinic.


Asunto(s)
Antineoplásicos , Colágeno , Inhibidores de Puntos de Control Inmunológico , Receptores Inmunológicos , Animales , Femenino , Humanos , Ratones , Línea Celular Tumoral , Colágeno/metabolismo , Modelos Animales de Enfermedad , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptores Inmunológicos/antagonistas & inhibidores , Receptores Inmunológicos/metabolismo , Antineoplásicos/uso terapéutico
10.
Nat Commun ; 15(1): 3152, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605064

RESUMEN

While we recognize the prognostic importance of clinicopathological measures and circulating tumor DNA (ctDNA), the independent contribution of quantitative image markers to prognosis in non-small cell lung cancer (NSCLC) remains underexplored. In our multi-institutional study of 394 NSCLC patients, we utilize pre-treatment computed tomography (CT) and 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) to establish a habitat imaging framework for assessing regional heterogeneity within individual tumors. This framework identifies three PET/CT subtypes, which maintain prognostic value after adjusting for clinicopathologic risk factors including tumor volume. Additionally, these subtypes complement ctDNA in predicting disease recurrence. Radiogenomics analysis unveil the molecular underpinnings of these imaging subtypes, highlighting downregulation in interferon alpha and gamma pathways in the high-risk subtype. In summary, our study demonstrates that these habitat imaging subtypes effectively stratify NSCLC patients based on their risk levels for disease recurrence after initial curative surgery or radiotherapy, providing valuable insights for personalized treatment approaches.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fluorodesoxiglucosa F18 , Radiofármacos , Recurrencia Local de Neoplasia/diagnóstico por imagen , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos X , Estudios Retrospectivos
11.
Cell Rep Med ; 5(3): 101463, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38471502

RESUMEN

[18F]Fluorodeoxyglucose positron emission tomography (FDG-PET) and computed tomography (CT) are indispensable components in modern medicine. Although PET can provide additional diagnostic value, it is costly and not universally accessible, particularly in low-income countries. To bridge this gap, we have developed a conditional generative adversarial network pipeline that can produce FDG-PET from diagnostic CT scans based on multi-center multi-modal lung cancer datasets (n = 1,478). Synthetic PET images are validated across imaging, biological, and clinical aspects. Radiologists confirm comparable imaging quality and tumor contrast between synthetic and actual PET scans. Radiogenomics analysis further proves that the dysregulated cancer hallmark pathways of synthetic PET are consistent with actual PET. We also demonstrate the clinical values of synthetic PET in improving lung cancer diagnosis, staging, risk prediction, and prognosis. Taken together, this proof-of-concept study testifies to the feasibility of applying deep learning to obtain high-fidelity PET translated from CT.


Asunto(s)
Neoplasias Pulmonares , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Fluorodesoxiglucosa F18 , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/genética , Tomografía Computarizada por Rayos X , Pronóstico
12.
Cancers (Basel) ; 16(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38473297

RESUMEN

Docetaxel +/- ramucirumab remains the standard-of-care therapy for patients with metastatic non-small-cell lung cancer (NSCLC) after progression on platinum doublets and immune checkpoint inhibitors (ICIs). The aim of our study was to investigate whether the cancer gene mutation status was associated with clinical benefits from docetaxel +/- ramucirumab. We also investigated whether platinum/taxane-based regimens offered a better clinical benefit in this patient population. A total of 454 patients were analyzed (docetaxel +/- ramucirumab n=381; platinum/taxane-based regimens n=73). Progression-free survival (PFS) and overall survival (OS) were compared among different subpopulations with different cancer gene mutations and between patients who received docetaxel +/- ramucirumab versus platinum/taxane-based regimens. Among patients who received docetaxel +/- ramucirumab, the top mutated cancer genes included TP53 (n=167), KRAS (n=127), EGFR (n=65), STK11 (n=32), ERBB2 (HER2) (n=26), etc. None of these cancer gene mutations or PD-L1 expression was associated with PFS or OS. Platinum/taxane-based regimens were associated with a significantly longer mQS (13.00 m, 95% Cl: 11.20-14.80 m versus 8.40 m, 95% Cl: 7.12-9.68 m, LogRank P=0.019) than docetaxel +/- ramcirumab. Key prognostic factors including age, histology, and performance status were not different between these two groups. In conclusion, in patients with metastatic NSCLC who have progressed on platinum doublets and ICIs, the clinical benefit from docetaxel +/- ramucirumab is not associated with the cancer gene mutation status. Platinum/taxane-based regimens may offer a superior clinical benefit over docetaxel +/- ramucirumab in this patient population.

13.
J Thorac Cardiovasc Surg ; 167(4): 1444-1453.e4, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37816395

RESUMEN

OBJECTIVE: Chemotherapy plus nivolumab is the standard of care neoadjuvant treatment for patients with resectable stage IB to IIIA non-small cell lung cancer. The influence of dual checkpoint blockade with chemotherapy on surgical outcomes remains unknown. We aimed to determine operative complexity and perioperative outcomes associated with neoadjuvant chemotherapy and nivolumab with or without ipilimumab. METHODS: A total of 44 patients with stage IB (≥4 cm) to IIIA non-small cell lung cancer were treated on sequential platform arms of the NEOSTAR trial. A total of 22 patients were treated with nivolumab + chemotherapy, and 22 patients were treated with ipilimumab + nivolumab + chemotherapy. The safety of surgical resection after neoadjuvant therapy was estimated using 30-day complication rates. Operative reports and surgeons' narratives were evaluated to determine procedural complexity and operative conduct. RESULTS: All 22 of 22 patients (100%) treated with nivolumab + chemotherapy underwent surgical resection: 20 R0 (90.9%), 17 (77.3%) lobectomies, 1 wedge resection, 2 segmentectomies, and 2 pneumonectomies. The majority, 21 of 22 (95%), were performed by thoracotomy. A total of 13 of 22 (59.1%) were rated as challenging resections. A total of 4 of 22 patients (18.2%) experienced grade 3 or greater Clavien-Dindo complication. A total of 20 of 22 patients (90.9%) treated with ipilimumab + nivolumab + chemotherapy underwent surgical resection: 19 R0 (95%), 18 (90%) lobectomies, 1 pneumonectomy, and 1 segmentectomy. A total of 16 of 20 (80%) resections were performed via thoracotomy, 3 of 20 (15%) via robotics, and 1 of 20 (5%) via thoracoscopy. A total of 9 of 20 (45%) resections were considered challenging. A total of 4 of 20 patients (20%) experienced grade 3 or greater Clavien-Dindo complication. CONCLUSIONS: Surgical resections are feasible and safe, with high rates of R0 after neoadjuvant chemotherapy and nivolumab with or without ipilimumab. Overall, approximately half of cases (22/42, 52.3%) were considered to be more challenging than a standard lobectomy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Nivolumab , Ipilimumab/efectos adversos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/cirugía , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Estadificación de Neoplasias , Terapia Neoadyuvante/efectos adversos , Resultado del Tratamiento
14.
J Thorac Oncol ; 19(3): 500-506, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38012986

RESUMEN

INTRODUCTION: Amivantamab-vmjw (amivantamab) is a bispecific EGFR/MET antibody approved for patients with advanced NSCLC with EGFR exon 20 insertion mutations, after prior therapy. Nevertheless, the benefits and safety of amivantamab in other EGFR-mutant lung cancer, with or without osimertinib, and with concurrent radiation therapy, are less known. METHODS: We queried the MD Anderson Lung Cancer GEMINI, Fred Hutchinson Cancer Research Center, University of California Davis Comprehensive Cancer Center, and Stanford Cancer Center's database for patients with EGFR-mutant NSCLC treated with amivantamab, not on a clinical trial. The data analyzed included initial response, duration of treatment, and concomitant radiation safety in overall population and prespecified subgroups. RESULTS: A total of 61 patients received amivantamab. Median age was 65 (31-81) years old; 72.1% were female; and 77% were patients with never smoking history. Median number of prior lines of therapies was four. On the basis of tumor's EGFR mutation, 39 patients were in the classical mutation cohort, 15 patients in the exon 20 cohort, and seven patients in the atypical cohort. There were 37 patients (58.7%) who received amivantamab concomitantly with osimertinib and 25 patients (39.1%) who received concomitant radiation. Furthermore, 54 patients were assessable for response in the overall population; 19 patients (45.2%) had clinical response and disease control rate (DCR) was 64.3%. In the classical mutation cohort of the 33 assessable patients, 12 (36.4%) had clinical response and DCR was 48.5%. In the atypical mutation cohort, six of the seven patients (85.7%) had clinical response and DCR was 100%. Of the 13 assessable patients in the exon 20 cohort, five patients (35.7%) had clinical response and DCR was 64.3%. Adverse events reported with amivantamab use were similar as previously described in product labeling. No additional toxicities were noted when amivantamab was given with radiation with or without osimertinib. CONCLUSIONS: Our real-world multicenter analysis revealed that amivantamab is a potentially effective treatment option for patients with EGFR mutations outside of exon 20 insertion mutations. The combination of osimertinib with amivantamab is safe and feasible. Radiation therapy also seems safe when administered sequentially or concurrently with amivantamab.


Asunto(s)
Acrilamidas , Anticuerpos Biespecíficos , Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Indoles , Neoplasias Pulmonares , Pirimidinas , Humanos , Femenino , Anciano , Adulto , Persona de Mediana Edad , Anciano de 80 o más Años , Masculino , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inducido químicamente , Antineoplásicos/uso terapéutico , Receptores ErbB/genética , Receptores ErbB/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/inducido químicamente , Compuestos de Anilina/farmacología , Compuestos de Anilina/uso terapéutico , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico
15.
Cancers (Basel) ; 15(19)2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37835518

RESUMEN

Histopathologic whole-slide images (WSI) are generally considered the gold standard for cancer diagnosis and prognosis. Survival prediction based on WSI has recently attracted substantial attention. Nevertheless, it remains a central challenge owing to the inherent difficulties of predicting patient prognosis and effectively extracting informative survival-specific representations from WSI with highly compounded gigapixels. In this study, we present a fully automated cellular-level dual global fusion pipeline for survival prediction. Specifically, the proposed method first describes the composition of different cell populations on WSI. Then, it generates dimension-reduced WSI-embedded maps, allowing for efficient investigation of the tumor microenvironment. In addition, we introduce a novel dual global fusion network to incorporate global and inter-patch features of cell distribution, which enables the sufficient fusion of different types and locations of cells. We further validate the proposed pipeline using The Cancer Genome Atlas lung adenocarcinoma dataset. Our model achieves a C-index of 0.675 (±0.05) in the five-fold cross-validation setting and surpasses comparable methods. Further, we extensively analyze embedded map features and survival probabilities. These experimental results manifest the potential of our proposed pipeline for applications using WSI in lung adenocarcinoma and other malignancies.

16.
Mod Pathol ; 36(12): 100326, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37678674

RESUMEN

Recent statistics on lung cancer, including the steady decline of advanced diseases and the dramatically increasing detection of early-stage diseases and indeterminate pulmonary nodules, mark the significance of a comprehensive understanding of early lung carcinogenesis. Lung adenocarcinoma (ADC) is the most common histologic subtype of lung cancer, and atypical adenomatous hyperplasia is the only recognized preneoplasia to ADC, which may progress to adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) and eventually to invasive ADC. Although molecular evolution during early lung carcinogenesis has been explored in recent years, the progress has been significantly hindered, largely due to insufficient materials from ADC precursors. Here, we employed state-of-the-art deep learning and artificial intelligence techniques to robustly segment and recognize cells on routinely used hematoxylin and eosin histopathology images and extracted 9 biology-relevant pathomic features to decode lung preneoplasia evolution. We analyzed 3 distinct cohorts (Japan, China, and United States) covering 98 patients, 162 slides, and 669 regions of interest, including 143 normal, 129 atypical adenomatous hyperplasia, 94 AIS, 98 MIA, and 205 ADC. Extracted pathomic features revealed progressive increase of atypical epithelial cells and progressive decrease of lymphocytic cells from normal to AAH, AIS, MIA, and ADC, consistent with the results from tissue-consuming and expensive molecular/immune profiling. Furthermore, pathomics analysis manifested progressively increasing cellular intratumor heterogeneity along with the evolution from normal lung to invasive ADC. These findings demonstrated the feasibility and substantial potential of pathomics in studying lung cancer carcinogenesis directly from the low-cost routine hematoxylin and eosin staining.


Asunto(s)
Adenocarcinoma in Situ , Adenocarcinoma , Neoplasias Pulmonares , Lesiones Precancerosas , Humanos , Hiperplasia/patología , Inteligencia Artificial , Eosina Amarillenta-(YS) , Hematoxilina , Adenocarcinoma/genética , Adenocarcinoma/patología , Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Adenocarcinoma in Situ/genética , Adenocarcinoma in Situ/patología , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología , Evolución Molecular , Carcinogénesis/patología
17.
Clin Cancer Res ; 29(23): 4958-4972, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37733794

RESUMEN

PURPOSE: Ataxia-telangiectasia mutated (ATM) is the most frequently mutated DNA damage repair gene in non-small cell lung cancer (NSCLC). However, the molecular correlates of ATM mutations and their clinical implications have not been fully elucidated. EXPERIMENTAL DESIGN: Clinicopathologic and genomic data from 26,587 patients with NSCLC from MD Anderson, public databases, and a de-identified nationwide (US-based) NSCLC clinicogenomic database (CGDB) were used to assess the co-mutation landscape, protein expression, and mutational processes in ATM-mutant tumors. We used the CGDB to evaluate ATM-associated outcomes in patients treated with immune checkpoint inhibitors (ICI) with or without chemotherapy, and assessed the effect of ATM loss on STING signaling and chemotherapy sensitivity in preclinical models. RESULTS: Nonsynonymous mutations in ATM were observed in 11.2% of samples (2,980/26,587) and were significantly associated with mutations in KRAS, but mutually exclusive with EGFR (q < 0.1). KRAS mutational status constrained the ATM co-mutation landscape, with strong mutual exclusivity with TP53 and KEAP1 within KRAS-mutated samples. Those ATM mutations that co-occurred with TP53 were more likely to be missense mutations and associate with high mutational burden, suggestive of non-functional passenger mutations. In the CGDB cohort, dysfunctional ATM mutations associated with improved OS only in patients treated with ICI-chemotherapy, and not ICI alone. In vitro analyses demonstrated enhanced upregulation of STING signaling in ATM knockout cells with the addition of chemotherapy. CONCLUSIONS: ATM mutations define a distinct subset of NSCLC associated with KRAS mutations, increased TMB, decreased TP53 and EGFR co-occurrence, and potential increased sensitivity to ICIs in the context of DNA-damaging chemotherapy.


Asunto(s)
Ataxia Telangiectasia , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Factor 2 Relacionado con NF-E2/genética , Mutación , Receptores ErbB/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo
18.
Cell Rep ; 42(9): 113067, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37659081

RESUMEN

Tumor-associated macrophages (TAMs) are integral to the development of complex tumor microenvironments (TMEs) and can execute disparate cellular programs in response to extracellular cues. However, upstream signaling processes underpinning this phenotypic plasticity remain to be elucidated. Here, we report that concordant AXL-STAT3 signaling in TAMs is triggered by lung cancer cells or cancer-associated fibroblasts in the cytokine milieu. This paracrine action drives TAM differentiation toward a tumor-promoting "M2-like" phenotype with upregulation of CD163 and putative mesenchymal markers, contributing to TAM heterogeneity and diverse cellular functions. One of the upregulated markers, CD44, mediated by AXL-IL-11-pSTAT3 signaling cascade, enhances macrophage ability to interact with endothelial cells and facilitate formation of primitive vascular networks. We also found that AXL-STAT3 inhibition can impede the recruitment of TAMs in a xenograft mouse model, thereby suppressing tumor growth. These findings suggest the potential application of AXL-STAT3-related markers to quantitatively assess metastatic potential and inform therapeutic strategies in lung cancer.


Asunto(s)
Neoplasias Pulmonares , Macrófagos Asociados a Tumores , Humanos , Animales , Ratones , Células Endoteliales , Transducción de Señal , Diferenciación Celular , Microambiente Tumoral , Línea Celular Tumoral
19.
J Clin Invest ; 133(17)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37655662

RESUMEN

Non-small cell lung cancers that harbor concurrent KRAS and TP53 (KP) mutations are immunologically warm tumors with partial responsiveness to anti-PD-(L)1 blockade; however, most patients observe little or no durable clinical benefit. To identify novel tumor-driven resistance mechanisms, we developed a panel of KP murine lung cancer models with intrinsic resistance to anti-PD-1 and queried differential gene expression between these tumors and anti-PD-1-sensitive tumors. We found that the enzyme autotaxin (ATX), and the metabolite it produces, lysophosphatidic acid (LPA), were significantly upregulated in resistant tumors and that ATX directly modulated antitumor immunity, with its expression negatively correlating with total and effector tumor-infiltrating CD8+ T cells. Pharmacological inhibition of ATX, or the downstream receptor LPAR5, in combination with anti-PD-1 was sufficient to restore the antitumor immune response and efficaciously control lung tumor growth in multiple KP tumor models. Additionally, ATX was significantly correlated with inflammatory gene signatures, including a CD8+ cytolytic score in multiple lung adenocarcinoma patient data sets, suggesting that an activated tumor-immune microenvironment upregulates ATX and thus provides an opportunity for cotargeting to prevent acquired resistance to anti-PD-1 treatment. These data reveal the ATX/LPA axis as an immunosuppressive pathway that diminishes the immune checkpoint blockade response in lung cancer.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Linfocitos T Citotóxicos , Muerte Celular , Microambiente Tumoral , Receptores del Ácido Lisofosfatídico
20.
Cell ; 186(18): 3968-3982.e15, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37586362

RESUMEN

Ductal carcinoma in situ (DCIS) is a common precursor of invasive breast cancer. Our understanding of its genomic progression to recurrent disease remains poor, partly due to challenges associated with the genomic profiling of formalin-fixed paraffin-embedded (FFPE) materials. Here, we developed Arc-well, a high-throughput single-cell DNA-sequencing method that is compatible with FFPE materials. We validated our method by profiling 40,330 single cells from cell lines, a frozen tissue, and 27 FFPE samples from breast, lung, and prostate tumors stored for 3-31 years. Analysis of 10 patients with matched DCIS and cancers that recurred 2-16 years later show that many primary DCIS had already undergone whole-genome doubling and clonal diversification and that they shared genomic lineages with persistent subclones in the recurrences. Evolutionary analysis suggests that most DCIS cases in our cohort underwent an evolutionary bottleneck, and further identified chromosome aberrations in the persistent subclones that were associated with recurrence.


Asunto(s)
Neoplasias de la Mama , Carcinoma Ductal de Mama , Carcinoma Intraductal no Infiltrante , Femenino , Humanos , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/genética , Carcinoma Intraductal no Infiltrante/genética , Carcinoma Intraductal no Infiltrante/patología , Progresión de la Enfermedad , Genómica/métodos , Análisis de Expresión Génica de una Sola Célula , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA