Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Adv Colloid Interface Sci ; 294: 102469, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34252719

RESUMEN

Surface chemistry of mineral phases in aqueous environments generates the electrostatic forces involved in particle-particle interactions. However, few models directly take into account the influence of surface speciation and changes in solution speciation when the diffuse layer potential profiles of approaching particles overlap and affect each other. These electrostatic interactions can be quantified, ideally, through charge regulation, considering solution and surface speciation changes upon particle approach by coupling state-of-the-art surface complexation models for the two particle surfaces with a Poisson-Boltzmann type distribution of electrostatic potential and ions in the inter-particle space. These models greatly improve the accuracy of inter-particle force calculations at small inter-particle separations compared to constant charge and constant potential approaches. This work aims at advancing charge regulation calculations by including full chemical speciation and advanced surface complexation models (Basic Stern-, three-, or four plane models and charge distribution concepts), for cases of similar and dissimilar surfaces involving the numerical solution of the Poisson-Boltzmann equation for arbitrary electrolytes. The concept was implemented as a Python-based code and in COMSOL. The flexibility and precision of both, concept and implementations are demonstrated in several benchmark calculations testing the new codes against published results or simulations using established speciation codes, including aqueous speciation, surface complexation and various interaction force examples. Due to the flexibility in terms of aqueous chemistry and surface complexation models for various geometries, a large variety of potential applications can be tackled with the developed codes including industrial, biological, and environmental systems, from colloidal suspensions to gas bubbles, emulsions, slurries like cement paste, as well as new possibilities to assess the chemistry in nano-confined systems.


Asunto(s)
Benchmarking , Coloides , Electrólitos , Iones , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA