Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Cureus ; 16(2): e53910, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38465049

RESUMEN

Klippel-Trenaunay syndrome (KTS) is a rare congenital disorder defined as a triad of capillary malformation, venous malformation, and hypertrophy of soft tissue and bones, with or without lymphatic malformation. We report a case of a KTS patient with a hospital course complicated by Group A Streptococcus bacteremia and multiple organ failure. The 39-year-old female with KTS presented to the emergency department with a fever, tachycardia, hypotension, and profuse diarrhea for one week. Blood cultures grew Group A Streptococcus necessitating a multi-antibiotic regimen and intravenous immunoglobulins (IVIG). Secondary to septic shock, the patient's renal function continuously declined requiring eight rounds of hemodialysis. She was electively intubated due to worsening acute hypoxic respiratory failure. Chest X-rays demonstrated consolidation, pneumonitis, pleural embolism, and effusions. The patient also required eight units of packed RBC throughout her hospitalization. An underlying autoimmune etiology was suspected due to multiorgan involvement and abnormal blood smears, which was confirmed by an autoimmune panel. The patient ultimately was stabilized and was optimized for discharge. This case demonstrates the importance of a multidisciplinary approach in managing patients with KTS due to their associated lymphatic abnormalities that predispose them to severe infections.

2.
PLoS One ; 15(10): e0241390, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33104742

RESUMEN

Mechanical cues activate cardiac fibroblasts and induce differentiation into myofibroblasts, which are key steps for development of cardiac fibrosis. In vitro, the high stiffness of plastic culturing conditions will also induce these changes. It is therefore challenging to study resting cardiac fibroblasts and their activation in vitro. Here we investigate the extent to which disrupting mechanotransduction by culturing cardiac fibroblasts on soft hydrogels or in the presence of biochemical inhibitors can be used to maintain resting cardiac fibroblasts in vitro. Primary cardiac fibroblasts were isolated from adult mice and cultured on plastic or soft (4.5 kPa) polyacrylamide hydrogels. Myofibroblast marker gene expression and smooth muscle α-actin (SMA) fibers were quantified by real-time PCR and immunostaining, respectively. Myofibroblast differentiation was prevented on soft hydrogels for 9 days, but had occurred after 15 days on hydrogels. Transferring myofibroblasts to soft hydrogels reduced expression of myofibroblast-associated genes, albeit SMA fibers remained present. Inhibitors of transforming growth factor ß receptor I (TGFßRI) and Rho-associated protein kinase (ROCK) were effective in preventing and reversing myofibroblast gene expression. SMA fibers were also reduced by blocker treatment although cell morphology did not change. Reversed cardiac fibroblasts maintained the ability to re-differentiate after the removal of blockers, suggesting that these are functionally similar to resting cardiac fibroblasts. However, actin alpha 2 smooth muscle (Acta2), lysyl oxidase (Lox) and periostin (Postn) were no longer sensitive to substrate stiffness, suggesting that transient treatment with mechanotransduction inhibitors changes the mechanosensitivity of some fibrosis-related genes. In summary, our results bring novel insight regarding the relative importance of specific mechanical signaling pathways in regulating different myofibroblast-associated genes. Furthermore, combining blocker treatment with the use of soft hydrogels has not been tested previously and revealed that only some genes remain mechano-sensitive after phenotypic reversion. This is important information for researchers using inhibitors to maintain a "resting" cardiac fibroblast phenotype in vitro as well as for our current understanding of mechanosensitive gene regulation.


Asunto(s)
Fibroblastos/citología , Mecanotransducción Celular , Miocardio/citología , Animales , Diferenciación Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Mecanotransducción Celular/efectos de los fármacos , Ratones , Fenotipo , Receptor Tipo I de Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Quinasas Asociadas a rho/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA