Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Cell Death Discov ; 10(1): 346, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090104

RESUMEN

Apoptosis plays a role in cell homeostasis in both normal development and disease. Bcl-xL, a member of the Bcl-2 family of proteins, regulates the intrinsic mitochondrial pathway of apoptosis. It is overexpressed in several cancers. Bcl-xL has a dual subcellular localisation and is found at the mitochondria as well as the endoplasmic reticulum (ER). However, the biological significance of its ER localisation is unclear. In order to decipher the functional contributions of the mitochondrial and reticular pools of Bcl-xL, we generated genetically modified mice expressing exclusively Bcl-xL at the ER, referred to as ER-xL, or the mitochondria, referred to as Mt-xL. By performing cell death assays, we demonstrated that ER-xL MEFs show increased vulnerability to apoptotic stimuli but are more resistant to ER stress. Furthermore, ER-xL MEFs displayed reduced 1,4,5-inositol trisphosphate receptor (IP3R)-mediated ER calcium release downstream of Phospholipase C activation. Collectively, our data indicate that upon ER stress, Bcl-xL negatively regulates IP3R-mediated calcium flux from the ER, which prevents ER calcium depletion and maintains the UPR and subsequent cell death in check. This work reveals a moonlighting function of Bcl-xL at the level of the ER, in addition to its well-known role in regulating apoptosis through the mitochondria.

2.
Cell Death Dis ; 14(6): 392, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37391438

RESUMEN

Overexpression of Bcl-2 proteins such as Bcl2L10, also referred to as Nrh, is associated with resistance to therapy and poor survival in various cancers, including breast cancer, lung cancer, and leukemia. The single nucleotide polymorphism (SNP) of BCL2L10 in its BH4 domain at position 11 (BCL2L10 Leu11Arg, rs2231292), corresponding to position 11 in the Nrh open reading frame, is reported to lower resistance towards chemotherapy, with patients showing better survival in the context of acute leukemia and colorectal cancer. Using cellular models and clinical data, we aimed to extend this knowledge to breast cancer. We report that the homozygous status of the Nrh Leu11Arg isoform (Nrh-R) is found in 9.7-11% percent of the clinical datasets studied. Furthermore, Nrh-R confers higher sensitivity towards Thapsigargin-induced cell death compared to the Nrh-L isoform, due to altered interactions with IP3R1 Ca2+ channels in the former case. Collectively, our data show that cells expressing the Nrh-R isoform are more prone to death triggered by Ca2+ stress inducers, compared to Nrh-L expressing cells. Analysis of breast cancer cohorts revealed that patients genotyped as Nrh-R/Nrh-R may have a better outcome. Overall, this study supports the notion that the rs2231292 Nrh SNP could be used as a predictive tool regarding chemoresistance, improving therapeutic decision-making processes. Moreover, it sheds new light on the contribution of the BH4 domain to the anti-apoptotic function of Nrh and identifies the IP3R1/Nrh complex as a potential therapeutic target in the context of breast cancer.


Asunto(s)
Neoplasias de la Mama , Leucemia , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Terapia Neoadyuvante , Polimorfismo de Nucleótido Simple/genética , Retículo Endoplásmico , Biomarcadores
3.
iScience ; 26(5): 106674, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37182099

RESUMEN

Non-lethal caspase activation (NLCA) has been linked to neurodevelopmental processes. However, how neurons control NLCA remains elusive. Here, we focused on Bcl-xL, a Bcl-2 homolog regulating caspase activation through the mitochondria. We generated a mouse model, referred to as ER-xL, in which Bcl-xL is absent in the mitochondria, yet present in the endoplasmic reticulum. Unlike bclx knockout mice that died at E13.5, ER-xL mice survived embryonic development but died post-partum because of altered feeding behavior. Enhanced caspase-3 activity was observed in the brain and the spinal cord white matter, but not the gray matter. No increase in cell death was observed in ER-xL cortical neurons, suggesting that the observed caspase-3 activation was apoptosis-independent. ER-xL neurons displayed increased caspase-3 activity in the neurites, resulting in impaired axon arborescence and synaptogenesis. Together, our findings suggest that mitochondrial Bcl-xL finely tunes caspase-3 through Drp-1-dependent mitochondrial fission, which is critical to neural network design.

4.
J Exp Clin Cancer Res ; 41(1): 324, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36380366

RESUMEN

BACKGROUND: Aerotaxis, the chemotactism to oxygen, is well documented in prokaryotes. We previously reported for the first time that non-tumorigenic breast epithelial cells also display unequivocal directional migration towards oxygen. This process is independent of the hypoxia-inducible factor (HIF)/prolyl hydroxylase domain (PHD) pathway but controlled by the redox regulation of epidermal growth factor receptor (EGFR), with a reactive oxygen species (ROS) gradient overlapping the oxygen gradient at low oxygen concentration. Since hypoxia is an acknowledged hallmark of cancers, we addressed the putative contribution of aerotaxis to cancer metastasis by studying the directed migration of cancer cells from an hypoxic environment towards nearby oxygen sources, modelling the in vivo migration of cancer cells towards blood capillaries. METHODS: We subjected to the aerotactic test described in our previous papers cells isolated from fresh breast tumours analysed by the Pathology Department of the Saint-Etienne University Hospital (France) over a year. The main selection criterion, aside from patient consent, was the size of the tumour, which had to be large enough to perform the aerotactic tests without compromising routine diagnostic tests. Finally, we compared the aerotactic properties of these primary cells with those of commonly available breast cancer cell lines. RESULTS: We show that cells freshly isolated from sixteen human breast tumour biopsies, representative of various histological characteristics and grades, are endowed with strong aerotactic properties similar to normal mammary epithelial cell lines. Strikingly, aerotaxis of these primary cancerous cells is also strongly dependent on both EGFR activation and ROS. In addition, we demonstrate that aerotaxis can trigger directional invasion of tumour cells within the extracellular matrix contrary to normal mammary epithelial cells. This contrasts with results obtained with breast cancer cell lines, in which aerotactic properties were either retained or impaired, and in some cases, even lost during the establishment of these cell lines. CONCLUSIONS: Altogether, our results support that aerotaxis may play an important role in breast tumour metastasis. In view of these findings, we discuss the prospects for combating metastatic spread. TRIAL REGISTRATION: IRBN1462021/CHUSTE.


Asunto(s)
Neoplasias de la Mama , Receptores ErbB , Humanos , Femenino , Especies Reactivas de Oxígeno , Receptores ErbB/metabolismo , Neoplasias de la Mama/genética , Oxígeno/metabolismo , Hipoxia
5.
Biomolecules ; 12(7)2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35883457

RESUMEN

Since the Nobel Prize award more than twenty years ago for discovering the core apoptotic pathway in C. elegans, apoptosis and various other forms of regulated cell death have been thoroughly characterized by researchers around the world. Although many aspects of regulated cell death still remain to be elucidated in specific cell subtypes and disease conditions, many predicted that research into cell death was inexorably reaching a plateau. However, this was not the case since the last decade saw a multitude of cell death modalities being described, while harnessing their therapeutic potential reached clinical use in certain cases. In line with keeping research into cell death alive, francophone researchers from several institutions in France and Belgium established the French Cell Death Research Network (FCDRN). The research conducted by FCDRN is at the leading edge of emerging topics such as non-apoptotic functions of apoptotic effectors, paracrine effects of cell death, novel canonical and non-canonical mechanisms to induce apoptosis in cell death-resistant cancer cells or regulated forms of necrosis and the associated immunogenic response. Collectively, these various lines of research all emerged from the study of apoptosis and in the next few years will increase the mechanistic knowledge into regulated cell death and how to harness it for therapy.


Asunto(s)
Caenorhabditis elegans , Neoplasias , Animales , Apoptosis , Muerte Celular , Humanos , Necrosis
6.
Data Brief ; 42: 108159, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35496477

RESUMEN

Drug discovery often requires the identification of off-targets as the binding of a compound to targets other than the intended target(s) can be beneficial in some cases or detrimental in other situations (e.g., binding to anti-targets). Such investigations are also of importance during the early stage of a project, for example when the target is not known (e.g., phenotypic screening). Target identification can be performed in-vitro, but various in-silico methods have also been developed in recent years to facilitate target identification and help generate ideas. FastTargetPred is one such approach, it is a freely available Python/C program that attempts to predict putative macromolecular targets (i.e., target fishing) for a single input small molecule query or an entire compound collection using established chemical similarity search approaches. Indeed, the putative macromolecular target(s) of a small chemical compound can be predicted by identifying ligands that are known experimentally to bind to some targets and that are structurally similar to the input query chemical compound. Therefore, this type of target fishing approach relies on a large collection of experimentally validated macromolecule-chemical compound binding data. The small chemical compounds can be described as molecular fingerprints encoding their structural characteristics as a vector. The published version of FastTargetPred used ligand-target binding data extracted from the release 25 (2019) of the ChEMBL database. Here we provide a new dataset for FastTargetPred extracted from the last ChEMBL release, namely, at the time of writing, ChEMBL29 (2021). Four fingerprints were computed (ECFP4, ECFP6, MACCS and PL) for the extracted compound dataset (714,780 unique ChEMBL29 compounds while the entire ChEMBL29 database contained about 2.1 million compounds). However, it was not possible to compute fingerprints for 19 molecules because of their unusual chemistry (complex macrocycles). These data files were then prepared so as to be compatible with FastTargetPred requirements. The 714,761 ChEMBL chemical compounds with computed fingerprints hit 6,477 macromolecular targets based on the selected criteria. For these ChEMBL compounds a ChEMBL target ID is reported and these target IDs were matched with the corresponding UniProt IDs. Thus, when available, the UniProt ID is provided, the protein UniProt name, the gene name, the organism as well as annotated involvement in diseases, gene ontology data, and cross-references to the Reactome pathway database. As short peptides can be of interest for drug discovery and chemical biology endeavours, we were interested in attempting to predict putative macromolecular targets for a previously reported exhaustive combination of peptides containing four natural amino acids (i.e., 20 × 20 × 20 × 20 = 160,000 linear tetrapeptides) using FastTargetPred and the presently generated ChEMBL29 dataset. With the parameters used, putative targets are reported for 63,944 unique query peptides. These target predictions are provided in two different searchable files with hyperlinks to the ChEMBL, UniProt and Reactome databases.

7.
Cell Calcium ; 101: 102504, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34823105

RESUMEN

Bcl-2 family proteins are major apoptosis regulators. They control a key step in apoptosis execution referred to as the mitochondrial outer membrane permeabilization. Several Bcl-2 homologs were also reported to act at the level of the endoplasmic reticulum (ER) where they control intracellular Ca2+ trafficking. There is an increasing body of evidence that, in addition to their conventional role as MOMP regulators, several Bcl-2 family members, including Bcl-xL, are linked to Ca2+ -dependent processes, independent of cell death. Among them Bcl-xL has been proposed to promote IP3R1 channel opening and sustain mitochondrial bioenergetics. A recent article by Rosa and colleagues in Cell Death & Differentiation challenges this model and support the notion that Bcl-xL acts more as a repressor than as a sensitizer of IP3R1 opening. They suggest the existence of intrafamilial competition among the Bcl-2 family of protein with respect to their effect on IP3R Ca2+ permeability, which might be important regarding their respective non-canonical functions. In this regard, the results by Rosa and colleagues open exciting avenues regarding the biological process by which Bcl-xL affects Ca2+ trafficking through IP 3 R channels.


Asunto(s)
Retículo Endoplásmico , Proteínas Proto-Oncogénicas c-bcl-2 , Apoptosis , Muerte Celular , Retículo Endoplásmico/metabolismo , Mitocondrias , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
8.
Front Cell Dev Biol ; 9: 702404, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34336853

RESUMEN

The caspase family of cysteine proteases represents the executioners of programmed cell death (PCD) type I or apoptosis. For years, caspases have been known for their critical roles in shaping embryonic structures, including the development of the central nervous system (CNS). Interestingly, recent findings have suggested that aside from their roles in eliminating unnecessary neural cells, caspases are also implicated in other neurodevelopmental processes such as axon guidance, synapse formation, axon pruning, and synaptic functions. These results raise the question as to how neurons regulate this decision-making, leading either to cell death or to proper development and differentiation. This review highlights current knowledge on apoptotic and non-apoptotic functions of caspases in the developing CNS. We also discuss the molecular factors involved in the regulation of caspase-mediated roles, emphasizing the mitochondrial pathway of cell death.

9.
Int J Mol Sci ; 22(6)2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33801158

RESUMEN

The B-cell lymphoma (Bcl-2) family of proteins are mainly known for their role in the regulation of apoptosis by preventing pore formation at the mitochondrial outer membrane and subsequent caspase activation. However, Bcl-2 proteins also have non-canonical functions, independent of apoptosis. Indeed, the cell death machinery, including Bcl-2 homologs, was reported to be essential for the central nervous system (CNS), notably with respect to synaptic transmission and axon pruning. Here we focused on Bcl-xL, a close Bcl-2 homolog, which plays a major role in neuronal development, as bclx knock out mice prematurely die at embryonic day 13.5, showing massive apoptosis in the CNS. In addition, we present evidence that Bcl-xL fosters ATP generation by the mitochondria to fuel high energy needs by neurons, and its contribution to synaptic transmission. We discuss how Bcl-xL might control local and transient activation of caspases in neurons without causing cell death. Consistently, Bcl-xL may contribute to morphological changes, such as sprouting and retractation of axon branches, in the context of CNS plasticity. Regarding degenerative diseases and aging, a better understanding of the numerous roles of the cell death machinery in neurons may have future clinical implications.


Asunto(s)
Neurogénesis , Neuronas/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo , Animales , Apoptosis/genética , Biomarcadores , Calcio/metabolismo , Caspasas/metabolismo , Plasticidad de la Célula/genética , Retículo Endoplásmico/metabolismo , Metabolismo Energético , Regulación de la Expresión Génica , Homeostasis , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Transducción de Señal
10.
Int J Mol Sci ; 22(7)2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918511

RESUMEN

Bcl-2 family proteins are considered as one of the major regulators of apoptosis. Indeed, this family is known to control the mitochondrial outer membrane permeabilization (MOMP): a central step in the mitochondrial pathway of apoptosis. However, in recent years Bcl-2 family members began to emerge as a new class of intracellular calcium (Ca2+) regulators. At mitochondria-ER contacts (MERCs) these proteins are able to interact with major Ca2+ transporters, thus controlling mitochondrial Ca2+ homeostasis and downstream Ca2+ signalling pathways. Beyond the regulation of cell survival, this Bcl-2-dependent control over the mitochondrial Ca2+ dynamics has far-reaching consequences on the physiology of the cell. Here, we review how the Bcl-2 family of proteins mechanistically regulate mitochondrial Ca2+ homeostasis and how this regulation orchestrates cell death/survival decisions as well as the non-apoptotic process of cell migration.


Asunto(s)
Señalización del Calcio , Mitocondrias/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Animales , Muerte Celular , Movimiento Celular , Retículo Endoplásmico/metabolismo , Humanos
11.
Sci Adv ; 6(40)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32998881

RESUMEN

In metazoans, Bcl-2 family proteins are major regulators of mitochondrially mediated apoptosis; however, their evolution remains poorly understood. Here, we describe the molecular characterization of the four members of the Bcl-2 family in the most primitive metazoan, Trichoplax adhaerens All four trBcl-2 homologs are multimotif Bcl-2 group, with trBcl-2L1 and trBcl-2L2 being highly divergent antiapoptotic Bcl-2 members, whereas trBcl-2L3 and trBcl-2L4 are homologs of proapoptotic Bax and Bak, respectively. trBax expression permeabilizes the mitochondrial outer membrane, while trBak operates as a BH3-only sensitizer repressing antiapoptotic activities of trBcl-2L1 and trBcl-2L2. The crystal structure of a trBcl-2L2:trBak BH3 complex reveals that trBcl-2L2 uses the canonical Bcl-2 ligand binding groove to sequester trBak BH3, indicating that the structural basis for apoptosis control is conserved from T. adhaerens to mammals. Finally, we demonstrate that both trBax and trBak BH3 peptides bind selectively to human Bcl-2 homologs to sensitize cancer cells to chemotherapy treatment.


Asunto(s)
Apoptosis , Proteína Destructora del Antagonista Homólogo bcl-2 , Animales , Humanos , Mamíferos/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/química , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo
12.
Oncogene ; 39(15): 3056-3074, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32066881

RESUMEN

The Bcl-xL apoptosis inhibitor plays a major role in vertebrate development. In addition to its effect on apoptosis, Bcl-xL is also involved in cell migration and mitochondrial metabolism. These effects may favour the onset and dissemination of metastasis. However, the underlying molecular mechanisms remain to be fully understood. Here we focus on the control of cell migration by Bcl-xL in the context of breast cancer cells. We show that Bcl-xL silencing led to migration defects in Hs578T and MDA-MB231 cells. These defects were rescued by re-expressing mitochondria-addressed, but not endoplasmic reticulum-addressed, Bcl-xL. The use of BH3 mimetics, such as ABT-737 and WEHI-539 confirmed that the effect of Bcl-xL on migration did not depend on interactions with BH3-containing death accelerators such as Bax or BH3-only proteins. In contrast, the use of a BH4 peptide that disrupts the Bcl-xL/VDAC1 complex supports that Bcl-xL by acting on VDAC1 permeability contributes to cell migration through the promotion of reactive oxygen species production by the electron transport chain. Collectively our data highlight the key role of Bcl-xL at the interface between cell metabolism, cell death, and cell migration, thus exposing the VDAC1/Bcl-xL interaction as a promising target for anti-tumour therapy in the context of metastatic breast cancer.


Asunto(s)
Neoplasias de la Mama/patología , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína bcl-X/metabolismo , Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/farmacología , Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/uso terapéutico , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/genética , Compuestos de Bifenilo/farmacología , Compuestos de Bifenilo/uso terapéutico , Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Modelos Animales de Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Metástasis Linfática/patología , Mitocondrias/efectos de los fármacos , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Invasividad Neoplásica/prevención & control , Nitrofenoles/farmacología , Nitrofenoles/uso terapéutico , Piperazinas/farmacología , Piperazinas/uso terapéutico , Unión Proteica/efectos de los fármacos , ARN Interferente Pequeño/metabolismo , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Canal Aniónico 1 Dependiente del Voltaje/antagonistas & inhibidores , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Pez Cebra , Proteína bcl-X/antagonistas & inhibidores , Proteína bcl-X/genética
13.
Nat Commun ; 9(1): 4545, 2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30382089

RESUMEN

Aerotaxis or chemotaxis to oxygen was described in bacteria 130 years ago. In eukaryotes, the main adaptation to hypoxia currently described relies on HIF transcription factors. To investigate whether aerotaxis is conserved in higher eukaryotes, an approach based on the self-generation of hypoxia after cell confinement was developed. We show that epithelial cells from various tissues migrate with an extreme directionality towards oxygen to escape hypoxia, independently of the HIF pathway. We provide evidence that, concomitant to the oxygen gradient, a gradient of reactive oxygen species (ROS) develops under confinement and that antioxidants dampen aerotaxis. Finally, we establish that in mammary cells, EGF receptor, the activity of which is potentiated by ROS and inhibited by hypoxia, represents the molecular target that guides hypoxic cells to oxygen. Our results reveals that aerotaxis is a property of higher eukaryotic cells and proceeds from the conversion of oxygen into ROS.


Asunto(s)
Movimiento Celular , Receptores ErbB/metabolismo , Glándulas Mamarias Humanas/citología , Oxígeno/farmacología , Hipoxia de la Célula/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Quimiotaxis/efectos de los fármacos , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Biológicos , Oxidación-Reducción , Procolágeno-Prolina Dioxigenasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
15.
Assay Drug Dev Technol ; 16(6): 350-360, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30088945

RESUMEN

In response to a variety of insults the unfolded protein response (UPR) is a major cell program quickly engaged to promote either cell survival or if stress levels cannot be relieved, apoptosis. UPR relies on three major pathways, named from the endoplasmic reticulum (ER) resident proteins IRE1α, PERK, and ATF6 that mediate response. Current tools to measure the activation of these ER stress response pathways in mammalian cells are cumbersome and not compatible with high-throughput imaging. In this study, we present IRE1α and PERK sensors with improved sensitivity, based on the canonical events of xbp1 splicing and ATF4 translation at ORF3. These sensors can be integrated into host cell genomes through lentiviral transduction, opening the way for use in a wide array of immortalized or primary mammalian cells. We demonstrate that high-throughput single-cell analysis offers unprecedented kinetic details compared with endpoint measurement of IRE1α and PERK activity. Finally, we point out the limitations of dye-based nuclear segmentation for live cell imaging applications, as we show that these dyes induce UPR and can strongly affect both the kinetic and dynamic responses of IRE1α and PERK pathways.


Asunto(s)
Colorantes/química , Endorribonucleasas/análisis , Imagen Óptica , Proteínas Serina-Treonina Quinasas/análisis , eIF-2 Quinasa/análisis , Células Cultivadas , Estrés del Retículo Endoplásmico , Endorribonucleasas/metabolismo , Células HCT116 , Células HEK293 , Células HeLa , Ensayos Analíticos de Alto Rendimiento , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Análisis de la Célula Individual , eIF-2 Quinasa/metabolismo
16.
Front Cell Dev Biol ; 6: 13, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29497611

RESUMEN

Bcl-2 family proteins are recognized as major regulators of the mitochondrial pathway of apoptosis. They control the mitochondrial outer membrane permeabilization (MOMP) by directly localizing to this organelle. Further investigations demonstrated that Bcl-2 related proteins are also found in other intracellular compartments such as the endoplasmic reticulum, the Golgi apparatus, the nucleus and the peroxisomes. At the level of these organelles, Bcl-2 family proteins not only regulate MOMP in a remote fashion but also participate in major cellular processes including calcium homeostasis, cell cycle control and cell migration. With the advances of live cell imaging techniques and the generation of fluorescent recombinant proteins, it became clear that the distribution of Bcl-2 proteins inside the cell is a dynamic process which is profoundly affected by changes in the cellular microenvironment. Here, we describe the current knowledge related to the subcellular distribution of the Bcl-2 family of proteins and further emphasize on the emerging concept that this highly dynamic process is critical for cell fate determination.

17.
Cancer Res ; 78(6): 1404-1417, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29330143

RESUMEN

Drug resistance and metastatic relapse remain a top challenge in breast cancer treatment. In this study, we present preclinical evidence for a strategy to eradicate advanced breast cancers by targeting the BCL-2 homolog Nrh/BCL2L10, which we discovered to be overexpressed in >45% of a large cohort of breast invasive carcinomas. Nrh expression in these tumors correlated with reduced metastasis-free survival, and we determined it to be an independent marker of poor prognosis. Nrh protein localized to the endoplasmic reticulum. Mechanistic investigations showed that Nrh made BH4 domain-dependent interactions with the ligand-binding domain of the inositol-1,4,5-triphosphate receptor (IP3R), a type 1/3 Ca2+ channel, allowing Nrh to negatively regulate ER-Ca2+ release and to mediate antiapoptosis. Notably, disrupting Nrh/IP3R complexes by BH4 mimetic peptides was sufficient to inhibit the growth of breast cancer cells in vitro and in vivo Taken together, our results highlighted Nrh as a novel prognostic marker and a candidate therapeutic target for late stage breast cancers that may be addicted to Nrh.Significance: These findings offer a comprehensive molecular model for the activity of Nrh/BCL2L10, a little studied antiapoptotic molecule, prognostic marker, and candidate drug target in breast cancer. Cancer Res; 78(6); 1404-17. ©2018 AACR.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Retículo Endoplásmico/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Animales , Apoptosis/fisiología , Sitios de Unión , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Calcio/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos , Retículo Endoplásmico/efectos de los fármacos , Femenino , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ratones SCID , Terapia Molecular Dirigida/métodos , Fragmentos de Péptidos/metabolismo , Péptidos/farmacología , Pronóstico , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Sci Rep ; 6: 36570, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27827394

RESUMEN

Intracellular Ca2+ signaling regulates cell migration by acting on cytoskeleton architecture, cell directionality and focal adhesions dynamics. In migrating cells, cytosolic Ca2+ pool and Ca2+ pulses are described as key components of these effects. Whereas the role of the mitochondrial calcium homeostasis and the Mitochondria Cacium Uniporter (MCU) in cell migration were recently highlighted in vivo using the zebrafish model, their implication in actin cystokeleton dynamics and cell migration in mammals is not totally characterized. Here, we show that mcu silencing in two human cell lines compromises their migration capacities. This phenotype is characterized by actin cytoskeleton stiffness, a cell polarization loss and an impairment of the focal adhesion proteins dynamics. At the molecular level, these effects appear to be mediated by the reduction of the ER and cytosolic Ca2+ pools, which leads to a decrease in Rho-GTPases, RhoA and Rac1, and Ca2+-dependent Calpain activites, but seem to be independent of intracellular ATP levels. Together, this study highlights the fundamental and evolutionary conserved role of the mitochondrial Ca2+ homeostasis in cytoskeleton dynamics and cell migration.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Calcio/metabolismo , Movimiento Celular , Mitocondrias/metabolismo , Animales , Polaridad Celular , Regulación hacia Abajo , Adhesiones Focales , Modelos Animales , Pez Cebra
19.
Histopathology ; 68(2): 279-85, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26033501

RESUMEN

AIMS: FOXL2 mutation has been consistently identified in adult granulosa cell tumours (A-GCTs). DICER1 mutations have been described predominantly in Sertoli-Leydig cell tumours (SLCTs). The prognostic implication of these mutations remains uncertain, as moderately sized studies have yielded variable outcomes. Our aim was to determine the implications of DICER1 and FOXL2 mutations in 156 ovarian sex cord-stromal tumours (SCSTs). METHODS AND RESULTS: FOXL2 mutations were found in 94% of pathologically confirmed A-GCTs (95/101), in one of eight juvenile granulosa cell tumours (J-GCTs), and in two of 19 SLCTs. DICER1 mutations in the RNase IIIb domain were found in six of 19 SLCTs, two of eight J-GCTs, and one of 12 undifferentiated SCSTs (Und-SCSTs). Comparison of DICER1-mutated SLCTs with DICER1-non-mutated SLCTs showed that patient age at diagnosis was lower and oestrogen receptor expression was more frequent in DICER1-mutated tumours. With a median follow-up of 22 months, two of five DICER1-mutated SLCTs relapsed, in contrast to none of eight DICER1-non-mutated tumours. CONCLUSIONS: Our results suggest that, in contrast to FOXL2 mutations in A-GCT, DICER1 mutations in SLCT might be more useful for prognosis than for diagnosis. However, study of a larger cohort of patients is necessary to establish this. Identification of genetic alterations in SCST offers promising therapeutic options.


Asunto(s)
ARN Helicasas DEAD-box/genética , Proteína Forkhead Box L2/genética , Tumor de Células de la Granulosa/genética , Neoplasias Ováricas/genética , Ribonucleasa III/genética , Tumor de Células de Sertoli-Leydig/genética , Tumores de los Cordones Sexuales y Estroma de las Gónadas/genética , Adolescente , Adulto , Anciano , Femenino , Tumor de Células de la Granulosa/diagnóstico , Tumor de Células de la Granulosa/patología , Humanos , Persona de Mediana Edad , Mutación , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/patología , Adhesión en Parafina , Pronóstico , Tumor de Células de Sertoli-Leydig/patología , Tumores de los Cordones Sexuales y Estroma de las Gónadas/diagnóstico , Tumores de los Cordones Sexuales y Estroma de las Gónadas/patología , Adulto Joven
20.
BMC Cancer ; 15: 453, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-26040677

RESUMEN

BACKGROUND: The Transforming growth factor ß (TGFß) signaling has a paradoxical role in cancer development and outcome. Besides, the prognostic significance of the TGFß1, SMAD4 in breast cancer patients is an area of many contradictions. The transcriptional intermediary factor 1γ (TIF1γ) is thought to interact with the TGFß/SMAD signaling through different mechanisms. Our study aims to define the prognostic significance of TGFß1, SMAD4 and TIF1γ expression in breast cancer patients and to detect possible interactions among those markers that might affect the outcome. METHODS: Immunohistochemistry was performed on tissue microarray (TMA) blocks prepared from samples of 248 operable breast cancer patients who presented at Centre Léon Bérard (CLB) between 1998 and 2001. The intensity and the percentage of stained tumor cells were integrated into a single score (0-6) and a cutoff was defined for high or low expression for each marker. Correlation was done between TGFß1, SMAD4 and TIF1γ expression with the clinico-pathologic parameters using Pearson's chi-square test. Kaplan-Meier method was used to estimate distant metastasis free survival (DMFS), disease free survival (DFS) and overall survival (OS) and the difference between the groups was evaluated with log-rank test. RESULTS: 223 cases were assessable for TIF1γ, 204 for TGFß1 and 173 for SMAD4. Median age at diagnosis was 55.8 years (range: 27 to 89 years). Tumors were larger than 20 mm in 49.2% and 45.2% had axillary lymph node (LN) metastasis (N1a to N3). 19.4% of the patients had SBR grade I tumors, 46.8% grade II tumors and 33.9% grade III tumors. ER was positive in 85.4%, PR in 75.5% and Her2-neu was over-expressed in 10% of the cases. Nuclear TIF1γ, cytoplasmic TGFß1, nuclear and cytoplasmic SMAD4 stainings were high in 35.9%, 30.4%, 27.7% and 52.6% respectively. TIF1γ expression was associated with younger age (p=0.006), higher SBR grade (p<0.001), more ER negativity (p=0.035), and tumors larger than 2 cm (p=0.081), while TGFß1 was not associated with any of the traditional prognostic factors. TGFß1 expression in tumor cells was a marker of poor prognosis regarding DMFS (HR=2.28; 95% CI: 1.4 to 3.8; p=0.002), DFS (HR=2.00; 95% CI: 1.25 to 3.5; p=0.005) and OS (HR=1.89; 95 % CI: 1.04 to 3.43; p=0.037). TIF1γ expression carried a tendency towards poorer DMFS (p=0.091), DFS (p=0.143) and OS (p=0.091). In the multivariate analysis TGFß1 remained an independent predictor of shorter DMFS, DFS and OS. Moreover, the prognostic significance of TGFß1 was more obvious in the TIF1γ high patient subgroup than in the patients with TIF1γ low expression. The subgroup expressing both markers had the worst DMFS (HR=3.2; 95% CI: 1.7 to 5.9; p<0.0001), DFS (HR=3.02; 95 % CI: 1.6 to 5.6; p<0.0001) and OS (HR=2.7; 95 % CI: 1.4 to 5.4; p=0.005). CONCLUSION: There is a crosstalk between the TIF1γ and the TGFß1/SMAD4 signaling that deteriorates the outcome of operable breast cancer patients and when combined together they can serve as an effective prognostic tool for those patients.


Asunto(s)
Neoplasias de la Mama/química , Neoplasias de la Mama/patología , Carcinoma/química , Proteína Smad4/análisis , Factores de Transcripción/análisis , Factor de Crecimiento Transformador beta1/análisis , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/cirugía , Carcinoma/secundario , Carcinoma/cirugía , Núcleo Celular/química , Citoplasma/química , Supervivencia sin Enfermedad , Femenino , Humanos , Metástasis Linfática , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias , Receptor ErbB-2/análisis , Receptores de Estrógenos/análisis , Receptores de Progesterona/análisis , Transducción de Señal , Tasa de Supervivencia , Carga Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA