Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 527(7579): 459-65, 2015 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-26580012

RESUMEN

Acorn worms, also known as enteropneust (literally, 'gut-breathing') hemichordates, are marine invertebrates that share features with echinoderms and chordates. Together, these three phyla comprise the deuterostomes. Here we report the draft genome sequences of two acorn worms, Saccoglossus kowalevskii and Ptychodera flava. By comparing them with diverse bilaterian genomes, we identify shared traits that were probably inherited from the last common deuterostome ancestor, and then explore evolutionary trajectories leading from this ancestor to hemichordates, echinoderms and chordates. The hemichordate genomes exhibit extensive conserved synteny with amphioxus and other bilaterians, and deeply conserved non-coding sequences that are candidates for conserved gene-regulatory elements. Notably, hemichordates possess a deuterostome-specific genomic cluster of four ordered transcription factor genes, the expression of which is associated with the development of pharyngeal 'gill' slits, the foremost morphological innovation of early deuterostomes, and is probably central to their filter-feeding lifestyle. Comparative analysis reveals numerous deuterostome-specific gene novelties, including genes found in deuterostomes and marine microbes, but not other animals. The putative functions of these genes can be linked to physiological, metabolic and developmental specializations of the filter-feeding ancestor.


Asunto(s)
Cordados no Vertebrados/genética , Evolución Molecular , Genoma/genética , Animales , Cordados no Vertebrados/clasificación , Secuencia Conservada/genética , Equinodermos/clasificación , Equinodermos/genética , Familia de Multigenes/genética , Filogenia , Transducción de Señal , Sintenía/genética , Factor de Crecimiento Transformador beta
2.
Mutat Res ; 723(2): 171-6, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21570478

RESUMEN

BACKGROUND: Malignant mesothelioma is a rare cancer caused by exposure to asbestos. Current therapies have limited efficacy and the prognosis is dismal. A better understanding of the underlying mechanism of asbestos-induced malignant transformation will help to identify molecular markers that can be used for diagnosis, prognosis or therapeutic targets. OBJECTIVES: The objectives of this study are (1) to identify altered levels of proteins and phosphoproteins and (2) to establish the interactive network among those proteins in crocidolite-treated benign mesothelial cells and in malignant mesothelial cells. METHODS: Total cellular proteins were extracted from benign mesothelial cells, crocidolite-treated mesothelial cells and malignant mesothelial cells. The expression levels of 112 proteins and phosphoproteins were analyzed using a multiplex immunoblot-based assay followed by computational analysis (Protein Pathway Array). RESULTS: A total of 16 proteins/phosphoproteins (7 down-regulated and 9 up-regulated) were altered after exposure of benign mesothelial cells to crocidolite asbestos and the majority of them are involved in DNA damage repair and cell cycle regulation. In malignant mesothelial cells, 21 proteins/phosphoproteins (5 down-regulated and 16 up-regulated) were dysregulated and majority of them are involved in EGFR/ERK and PI3K/Akt pathways. Within the regulatory network affected by crocidolite, p53 and NF-κB complex are the most important regulators. There was substantial overlap in the regulatory networks between the asbestos-treated cells and malignant mesothelial cells. CONCLUSIONS: Asbestos exposure has extensive effects on regulatory pathways and networks. These altered proteins may be used in the future to identify those with a high risk for developing malignant mesothelioma and as targets for preventing this deadly malignancy.


Asunto(s)
Asbesto Crocidolita/farmacología , Células Epiteliales/metabolismo , Mesotelioma/metabolismo , Fosfoproteínas/metabolismo , Proteínas/metabolismo , Línea Celular , Células Epiteliales/efectos de los fármacos , Regulación de la Expresión Génica , Humanos , Transducción de Señal/efectos de los fármacos
3.
Nat Struct Mol Biol ; 17(4): 513-8, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20357774

RESUMEN

Telomerase is a specialized DNA polymerase that extends the 3' ends of eukaryotic linear chromosomes, a process required for genomic stability and cell viability. Here we present the crystal structure of the active Tribolium castaneum telomerase catalytic subunit, TERT, bound to an RNA-DNA hairpin designed to resemble the putative RNA-templating region and telomeric DNA. The RNA-DNA hybrid adopts a helical structure, docked in the interior cavity of the TERT ring. Contacts between the RNA template and motifs 2 and B' position the solvent-accessible RNA bases close to the enzyme active site for nucleotide binding and selectivity. Nucleic acid binding induces rigid TERT conformational changes to form a tight catalytic complex. Overall, TERT-RNA template and TERT-telomeric DNA associations are remarkably similar to those observed for retroviral reverse transcriptases, suggesting common mechanistic aspects of DNA replication between the two families of enzymes.


Asunto(s)
ADN/metabolismo , ARN/metabolismo , Telomerasa/metabolismo , Telómero , Moldes Genéticos , Animales , Dominio Catalítico , Modelos Moleculares , Conformación Proteica , Tribolium/enzimología
4.
Nature ; 455(7213): 633-7, 2008 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-18758444

RESUMEN

A common hallmark of human cancers is the overexpression of telomerase, a ribonucleoprotein complex that is responsible for maintaining the length and integrity of chromosome ends. Telomere length deregulation and telomerase activation is an early, and perhaps necessary, step in cancer cell evolution. Here we present the high-resolution structure of the Tribolium castaneum catalytic subunit of telomerase, TERT. The protein consists of three highly conserved domains, organized into a ring-like structure that shares common features with retroviral reverse transcriptases, viral RNA polymerases and B-family DNA polymerases. Domain organization places motifs implicated in substrate binding and catalysis in the interior of the ring, which can accommodate seven to eight bases of double-stranded nucleic acid. Modelling of an RNA-DNA heteroduplex in the interior of this ring demonstrates a perfect fit between the protein and the nucleic acid substrate, and positions the 3'-end of the DNA primer at the active site of the enzyme, providing evidence for the formation of an active telomerase elongation complex.


Asunto(s)
Telomerasa/química , Tribolium/enzimología , Secuencias de Aminoácidos , Animales , Sitios de Unión , Catálisis , Dominio Catalítico , Secuencia Conservada , Cristalización , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Nucleótidos/metabolismo , Estructura Terciaria de Proteína , Telomerasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA