Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Ann Neurol ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320038

RESUMEN

OBJECTIVE: Mitochondria are implicated in regulation of the innate immune response. We hypothesized that abnormalities in interferon signaling may contribute to pathophysiology in patients with primary mitochondrial disease (PMD). METHODS: Expression of interferon stimulated genes (ISGs) was measured by real-time polymerase chain reaction (PCR) in whole blood samples from a cohort of patients with PMD. RESULTS: Upregulated ISG expression was observed in a high proportion (41/55, 75%) of patients with PMD on at least 1 occasion, most frequently IFI27 upregulation, seen in 50% of the samples. Some patients had extremely high IFI27 levels, similar to those seen in patients with primary interferonopathies. A statistically significant correlation was observed between elevated IFI27 gene expression and PMD, but not between IFI27 and secondary mitochondrial dysfunction, suggesting that ISG upregulation is a biomarker of PMD. In some patients with PMD, ISG abnormalities persisted on repeat measurement over several years, indicative of ongoing chronic inflammation. Subgroup analyses suggested common ISG signatures in patients with similar mitochondrial disease mechanisms and positive correlations with disease severity among patients with identical genetic diagnoses. INTERPRETATION: Dysregulated interferon signaling is frequently seen in patients with PMD suggesting that interferon dysregulation is a contributor to pathophysiology. This may indicate a role for repurposing of immunomodulatory therapies for the treatment of PMDs by targeting interferon signaling. ANN NEUROL 2024.

2.
EJHaem ; 5(4): 784-788, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39157618

RESUMEN

Congenital enterovirus infection can be associated with a pro-inflammatory state triggering haemophagocytic lymphohistiocytosis (HLH). Enteroviruses are also known to cause transient neutropenia in healthy children. Two infants presented with temperature instability, lethargy, thrombocytopaenia, hepatosplenomegaly and evidence of hyperinflammation in the setting of perinatal maternal rash and household contacts with gastrointestinal symptoms. Whilst HLH was successfully treated in both, protracted neutropenia persisted. Immune dysregulation with enterovirus in the neonatal period can provoke the generation of autoantibodies to hematologic cells giving rise to conditions such as autoimmune neutropenia. Sustained neutropaenia, after resolution of secondary infectious forms of HLH, requires investigation for underlying aetiologies.

3.
Front Neurol ; 15: 1426051, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39175762

RESUMEN

Introduction: New onset refractory status epilepticus (NORSE) is a rare and devastating condition characterised by the sudden onset of refractory status epilepticus (RSE) without an identifiable acute or active structural, toxic, or metabolic cause in an individual without a pre-existing diagnosis of epilepsy. Febrile infection-related epilepsy syndrome (FIRES) is considered a subcategory of NORSE and presents following a febrile illness prior to seizure onset. NORSE/FIRES is associated with high morbidity and mortality in children and adults. Methods and results: In this review we first briefly summarise the reported clinical, paraclinical, treatment and outcome data in the literature. We then report on existing knowledge of the underlying pathophysiology in relation to in vitro and in vivo pre-clinical seizure and epilepsy models of potential relevance to NORSE/FIRES. Discussion: We highlight how pre-clinical models can enhance our understanding of FIRES/NORSE and propose future directions for research.

4.
Blood ; 144(8): 873-887, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-38958468

RESUMEN

ABSTRACT: Primary hemophagocytic lymphohistiocytosis (HLH) is a life-threatening disorder associated with autosomal recessive variants in genes required for perforin-mediated lymphocyte cytotoxicity. A rapid diagnosis is crucial for successful treatment. Although defective cytotoxic T lymphocyte (CTL) function causes pathogenesis, quantification of natural killer (NK)-cell exocytosis triggered by K562 target cells currently represents a standard diagnostic procedure for primary HLH. We have prospectively evaluated different lymphocyte exocytosis assays in 213 patients referred for evaluation for suspected HLH and related hyperinflammatory syndromes. A total of 138 patients received a molecular diagnosis consistent with primary HLH. Assessment of Fc receptor-triggered NK-cell and T-cell receptor (TCR)-triggered CTL exocytosis displayed higher sensitivity and improved specificity for the diagnosis of primary HLH than routine K562 cell-based assays, with these assays combined providing a sensitivity of 100% and specificity of 98.3%. By comparison, NK-cell exocytosis after K562 target cell stimulation displayed a higher interindividual variability, in part explained by differences in NK-cell differentiation or large functional reductions after shipment. We thus recommend combined analysis of TCR-triggered CTL and Fc receptor-triggered NK-cell exocytosis for the diagnosis of patients with suspected familial HLH or atypical manifestations of congenital defects in lymphocyte exocytosis.


Asunto(s)
Exocitosis , Células Asesinas Naturales , Linfohistiocitosis Hemofagocítica , Linfocitos T Citotóxicos , Humanos , Linfocitos T Citotóxicos/inmunología , Linfohistiocitosis Hemofagocítica/diagnóstico , Linfohistiocitosis Hemofagocítica/inmunología , Linfohistiocitosis Hemofagocítica/genética , Linfohistiocitosis Hemofagocítica/patología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Adolescente , Niño , Adulto , Femenino , Células K562 , Masculino , Preescolar , Persona de Mediana Edad , Lactante , Adulto Joven , Anciano , Sensibilidad y Especificidad , Estudios Prospectivos , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/genética
7.
Clin Infect Dis ; 78(3): 594-602, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-37647517

RESUMEN

BACKGROUND: To protect healthcare workers (HCWs) from the consequences of disease due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it is necessary to understand the risk factors that drive exposure and infection within hospitals. Insufficient consideration of key socioeconomic variables is a limitation of existing studies that can lead to bias and residual confounding of proposed risk factors for infection. METHODS: The Co-STARs study prospectively enrolled 3679 HCWs between April 2020 and September 2020. We used multivariate logistic regression to comprehensively characterize the demographic, occupational, socioeconomic, and environmental risk factors for SARS-CoV-2 seropositivity. RESULTS: After adjusting for key confounders, relative household overcrowding (odds ratio [OR], 1.4 [95% confidence interval {CI}, 1.1-1.9]; P = .006), Black, Black British, Caribbean, or African ethnicity (OR, 1.7 [95% CI, 1.2-2.3]; P = .003), increasing age (ages 50-60 years: OR, 1.8 [95% CI, 1.3-2.4]; P < .001), lack of access to sick pay (OR, 1.8 [95% CI, 1.3-2.4]; P < .001). CONCLUSIONS: Socioeconomic and demographic factors outside the hospital were the main drivers of infection and exposure to SARS-CoV-2 during the first wave of the pandemic in an urban pediatric referral hospital. Overcrowding and out-of-hospital SARS-CoV-2 contact are less amenable to intervention. However, lack of access to sick pay among externally contracted staff is more easily rectifiable. Our findings suggest that providing easier access to sick pay would lead to a decrease in SARS-CoV-2 transmission and potentially that of other infectious diseases in hospital settings. CLINICAL TRIALS REGISTRATION: NCT04380896.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Persona de Mediana Edad , COVID-19/epidemiología , Demografía , Personal de Salud , Hospitales , Estudios Prospectivos , Factores de Riesgo , Factores Socioeconómicos , Reino Unido/epidemiología , Población Negra , Pueblos Caribeños , Pueblo Africano
8.
Blood ; 143(2): 118-123, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37647647

RESUMEN

ABSTRACT: CD19-negative relapse is a leading cause of treatment failure after chimeric antigen receptor (CAR) T-cell therapy for acute lymphoblastic leukemia. We investigated a CAR T-cell product targeting CD19 and CD22 generated by lentiviral cotransduction with vectors encoding our previously described fast-off rate CD19 CAR (AUTO1) combined with a novel CD22 CAR capable of effective signaling at low antigen density. Twelve patients with advanced B-cell acute lymphoblastic leukemia were treated (CARPALL [Immunotherapy with CD19/22 CAR Redirected T Cells for High Risk/Relapsed Paediatric CD19+ and/or CD22+ Acute Lymphoblastic Leukaemia] study, NCT02443831), a third of whom had failed prior licensed CAR therapy. Toxicity was similar to that of AUTO1 alone, with no cases of severe cytokine release syndrome. Of 12 patients, 10 (83%) achieved a measurable residual disease (MRD)-negative complete remission at 2 months after infusion. Of 10 responding patients, 5 had emergence of MRD (n = 2) or relapse (n = 3) with CD19- and CD22-expressing disease associated with loss of CAR T-cell persistence. With a median follow-up of 8.7 months, there were no cases of relapse due to antigen-negative escape. Overall survival was 75% (95% confidence interval [CI], 41%-91%) at 6 and 12 months. The 6- and 12-month event-free survival rates were 75% (95% CI, 41%-91%) and 60% (95% CI, 23%-84%), respectively. These data suggest dual targeting with cotransduction may prevent antigen-negative relapse after CAR T-cell therapy.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores Quiméricos de Antígenos , Humanos , Niño , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos/genética , Recurrencia , Antígenos CD19 , Linfocitos T , Lectina 2 Similar a Ig de Unión al Ácido Siálico
9.
Mucosal Immunol ; 17(1): 124-136, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38007005

RESUMEN

SARS-CoV-2 initially infects cells in the nasopharynx and oral cavity. The immune system at these mucosal sites plays a crucial role in minimizing viral transmission and infection. To develop new strategies for preventing SARS-CoV-2 infection, this study aimed to identify proteins that protect against viral infection in saliva. We collected 551 saliva samples from 290 healthcare workers who had tested positive for COVID-19, before vaccination, between June and December 2020. The samples were categorized based on their ability to block or enhance infection using in vitro assays. Mass spectrometry and enzyme-linked immunosorbent assay experiments were used to identify and measure the abundance of proteins that specifically bind to SARS-CoV-2 antigens. Immunoglobulin (Ig)A specific to SARS-CoV-2 antigens was detectable in over 83% of the convalescent saliva samples. We found that concentrations of anti-receptor-binding domain IgA >500 pg/µg total protein in saliva correlate with reduced viral infectivity in vitro. However, there is a dissociation between the salivary IgA response to SARS-CoV-2, and systemic IgG titers in convalescent COVID-19 patients. Then, using an innovative technique known as spike-baited mass spectrometry, we identified novel spike-binding proteins in saliva, most notably vimentin, which correlated with increased viral infectivity in vitro and could serve as a therapeutic target against COVID-19.


Asunto(s)
COVID-19 , Humanos , Anticuerpos Antivirales , Antígenos Virales , Inmunoglobulina A , SARS-CoV-2 , Vimentina
10.
Nucleic Acids Res ; 52(D1): D1333-D1346, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37953324

RESUMEN

The Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English. Since our last report, a total of 2239 new HPO terms and 49235 new HPO annotations were developed, many in collaboration with external groups in the fields of psychiatry, arthrogryposis, immunology and cardiology. The Medical Action Ontology (MAxO) is a new effort to model treatments and other measures taken for clinical management. Finally, the HPO consortium is contributing to efforts to integrate the HPO and the GA4GH Phenopacket Schema into electronic health records (EHRs) with the goal of more standardized and computable integration of rare disease data in EHRs.


Asunto(s)
Ontologías Biológicas , Humanos , Fenotipo , Genómica , Algoritmos , Enfermedades Raras
11.
Front Immunol ; 14: 1231749, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744344

RESUMEN

We describe a novel, severe autoinflammatory syndrome characterized by neuroinflammation, systemic autoinflammation, splenomegaly, and anemia (NASA) caused by bi-allelic mutations in IRAK4. IRAK-4 is a serine/threonine kinase with a pivotal role in innate immune signaling from toll-like receptors and production of pro-inflammatory cytokines. In humans, bi-allelic mutations in IRAK4 result in IRAK-4 deficiency and increased susceptibility to pyogenic bacterial infections, but autoinflammation has never been described. We describe 5 affected patients from 2 unrelated families with compound heterozygous mutations in IRAK4 (c.C877T (p.Q293*)/c.G958T (p.D320Y); and c.A86C (p.Q29P)/c.161 + 1G>A) resulting in severe systemic autoinflammation, massive splenomegaly and severe transfusion dependent anemia and, in 3/5 cases, severe neuroinflammation and seizures. IRAK-4 protein expression was reduced in peripheral blood mononuclear cells (PBMC) in affected patients. Immunological analysis demonstrated elevated serum tumor necrosis factor (TNF), interleukin (IL) 1 beta (IL-1ß), IL-6, IL-8, interferon α2a (IFN-α2a), and interferon ß (IFN-ß); and elevated cerebrospinal fluid (CSF) IL-6 without elevation of CSF IFN-α despite perturbed interferon gene signature. Mutations were located within the death domain (DD; p.Q29P and splice site mutation c.161 + 1G>A) and kinase domain (p.Q293*/p.D320Y) of IRAK-4. Structure-based modeling of the DD mutation p.Q29P showed alteration in the alignment of a loop within the DD with loss of contact distance and hydrogen bond interactions with IRAK-1/2 within the myddosome complex. The kinase domain mutation p.D320Y was predicted to stabilize interactions within the kinase active site. While precise mechanisms of autoinflammation in NASA remain uncertain, we speculate that loss of negative regulation of IRAK-4 and IRAK-1; dysregulation of myddosome assembly and disassembly; or kinase active site instability may drive dysregulated IL-6 and TNF production. Blockade of IL-6 resulted in immediate and complete amelioration of systemic autoinflammation and anemia in all 5 patients treated; however, neuroinflammation has, so far proven recalcitrant to IL-6 blockade and the janus kinase (JAK) inhibitor baricitinib, likely due to lack of central nervous system penetration of both drugs. We therefore highlight that bi-allelic mutation in IRAK4 may be associated with a severe and complex autoinflammatory and neuroinflammatory phenotype that we have called NASA (neuroinflammation, autoinflammation, splenomegaly and anemia), in addition to immunodeficiency in humans.


Asunto(s)
Anemia , Leucocitos Mononucleares , Humanos , Quinasas Asociadas a Receptores de Interleucina-1/genética , Esplenomegalia/genética , Interleucina-6 , Enfermedades Neuroinflamatorias , Anemia/genética , Mutación
12.
N Engl J Med ; 389(10): 899-910, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37314354

RESUMEN

BACKGROUND: Cytidine deamination that is guided by clustered regularly interspaced short palindromic repeats (CRISPR) can mediate a highly precise conversion of one nucleotide into another - specifically, cytosine to thymine - without generating breaks in DNA. Thus, genes can be base-edited and rendered inactive without inducing translocations and other chromosomal aberrations. The use of this technique in patients with relapsed childhood T-cell leukemia is being investigated. METHODS: We used base editing to generate universal, off-the-shelf chimeric antigen receptor (CAR) T cells. Healthy volunteer donor T cells were transduced with the use of a lentivirus to express a CAR with specificity for CD7 (CAR7), a protein that is expressed in T-cell acute lymphoblastic leukemia (ALL). We then used base editing to inactivate three genes encoding CD52 and CD7 receptors and the ß chain of the αß T-cell receptor to evade lymphodepleting serotherapy, CAR7 T-cell fratricide, and graft-versus-host disease, respectively. We investigated the safety of these edited cells in three children with relapsed leukemia. RESULTS: The first patient, a 13-year-old girl who had relapsed T-cell ALL after allogeneic stem-cell transplantation, had molecular remission within 28 days after infusion of a single dose of base-edited CAR7 (BE-CAR7). She then received a reduced-intensity (nonmyeloablative) allogeneic stem-cell transplant from her original donor, with successful immunologic reconstitution and ongoing leukemic remission. BE-CAR7 cells from the same bank showed potent activity in two other patients, and although fatal fungal complications developed in one patient, the other patient underwent allogeneic stem-cell transplantation while in remission. Serious adverse events included cytokine release syndrome, multilineage cytopenia, and opportunistic infections. CONCLUSIONS: The interim results of this phase 1 study support further investigation of base-edited T cells for patients with relapsed leukemia and indicate the anticipated risks of immunotherapy-related complications. (Funded by the Medical Research Council and others; ISRCTN number, ISRCTN15323014.).


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Inmunoterapia Adoptiva , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adolescente , Niño , Femenino , Humanos , Antígenos CD19 , Antígenos CD7 , Antígeno CD52 , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Inmunoterapia Adoptiva/efectos adversos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos de Linfocitos T/genética , Recurrencia , Trasplante de Células Madre , Linfocitos T
13.
J Clin Immunol ; 43(7): 1611-1622, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37316763

RESUMEN

The transcription factor STAT6 (Signal Transducer and Activator of Transcription 6) is a key regulator of Th2 (T-helper 2) mediated allergic inflammation via the IL-4 (interleukin-4) JAK (Janus kinase)/STAT signalling pathway. We identified a novel heterozygous germline mutation STAT6 c.1255G > C, p.D419H leading to overactivity of IL-4 JAK/STAT signalling pathway, in a kindred affected by early-onset atopic dermatitis, food allergy, eosinophilic asthma, anaphylaxis and follicular lymphoma. STAT6 D419H expression and functional activity were compared with wild type STAT6 in transduced HEK293T cells and to healthy control primary skin fibroblasts and peripheral blood mononuclear cells (PBMC). We observed consistently higher STAT6 levels at baseline and higher STAT6 and phosphorylated STAT6 following IL-4 stimulation in D419H cell lines and primary cells compared to wild type controls. The pSTAT6/STAT6 ratios were unchanged between D419H and control cells suggesting that elevated pSTAT6 levels resulted from higher total basal STAT6 expression. The selective JAK1/JAK2 inhibitor ruxolitinib reduced pSTAT6 levels in D419H HEK293T cells and patient PBMC. Nuclear staining demonstrated increased STAT6 in patient fibroblasts at baseline and both STAT6 and pSTAT6 after IL-4 stimulation. We also observed higher transcriptional upregulation of downstream genes (XBP1 and EPAS1) in patient PBMC. Our study confirms STAT6 gain of function (GOF) as a novel monogenetic cause of early onset atopic disease. The clinical association of lymphoma in our kindred, along with previous data linking somatic STAT6 D419H mutations to follicular lymphoma suggest that patients with STAT6 GOF disease may be at higher risk of lymphomagenesis.245 words.


Asunto(s)
Interleucina-4 , Linfoma Folicular , Humanos , Interleucina-4/genética , Interleucina-4/metabolismo , Leucocitos Mononucleares/metabolismo , Factor de Transcripción STAT6/genética , Factor de Transcripción STAT6/metabolismo , Mutación con Ganancia de Función , Células HEK293 , Quinasas Janus
14.
Front Immunol ; 14: 1186575, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37377976

RESUMEN

Background: Sphingosine phosphate lyase insufficiency syndrome (SPLIS) is associated with biallelic variants in SGPL1, comprising a multisystemic disease characterized by steroid resistant nephrotic syndrome, primary adrenal insufficiency, neurological problems, skin abnormalities and immunodeficiency in described cases. Signal transducer and activator of transcription 1 (STAT1) plays an important role in orchestrating an appropriate immune response through JAK-STAT pathway. Biallelic STAT1 loss of function (LOF) variants lead to STAT1 deficiency with a severe phenotype of immunodeficiency with increased frequency of infections and poor outcome if untreated. Case presentation: We report novel homozygous SGPL1 and STAT1 variants in a newborn of Gambian ethnicity with clinical features of SPLIS and severe combined immunodeficiency. The patient presented early in life with nephrotic syndrome, severe respiratory infection requiring ventilation, ichthyosis, and hearing loss, with T-cell lymphopenia. The combination of these two conditions led to severe combined immunodeficiency with inability to clear respiratory tract infections of viral, fungal, and bacterial nature, as well as severe nephrotic syndrome. The child sadly died at 6 weeks of age despite targeted treatments. Conclusion: We report the finding of two novel, homozygous variants in SGPL1 and STAT1 in a patient with a severe clinical phenotype and fatal outcome early in life. This case highlights the importance of completing the primary immunodeficiency genetic panel in full to avoid missing a second diagnosis in other patients presenting with similar severe clinical phenotype early in life. For SPLIS no curative treatment is available and more research is needed to investigate different treatment modalities. Hematopoietic stem cell transplantation (HSCT) shows promising results in patients with autosomal recessive STAT1 deficiency. For this patient's family, identification of the dual diagnosis has important implications for future family planning. In addition, future siblings with the familial STAT1 variant can be offered curative treatment with HSCT.


Asunto(s)
Síndromes de Inmunodeficiencia , Síndrome Nefrótico , Inmunodeficiencia Combinada Grave , Humanos , Aldehído-Liasas/genética , Aldehído-Liasas/metabolismo , Quinasas Janus/metabolismo , Síndrome Nefrótico/genética , Transducción de Señal , Factores de Transcripción STAT/metabolismo , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Recién Nacido
15.
Lancet Gastroenterol Hepatol ; 8(3): 271-286, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36634696

RESUMEN

Genomic medicine enables the identification of patients with rare or ultra-rare monogenic forms of inflammatory bowel disease (IBD) and supports clinical decision making. Patients with monogenic IBD frequently experience extremely early onset of treatment-refractory disease, with complex extraintestinal disease typical of immunodeficiency. Since more than 100 monogenic disorders can present with IBD, new genetic disorders and variants are being discovered every year, and as phenotypic expression of the gene defects is variable, adaptive genomic technologies are required. Monogenic IBD has become a key area to establish the concept of precision medicine. Clear guidance and standardised, affordable applications of genomic technologies are needed to implement exome or genome sequencing in clinical practice. This joint British Society of Gastroenterology and British Society of Paediatric Gastroenterology, Hepatology and Nutrition guideline aims to ensure that testing resources are appropriately applied to maximise the benefit to patients on a national scale, minimise health-care disparities in accessing genomic technologies, and optimise resource use. We set out the structural requirements for genomic medicine as part of a multidisciplinary team approach. Initiation of genomic diagnostics should be guided by diagnostic criteria for the individual patient, in particular the age of IBD onset and the patient's history, and potential implications for future therapies. We outline the diagnostic care pathway for paediatric and adult patients. This guideline considers how to handle clinically actionable findings in research studies and the impact of consumer-based genomics for monogenic IBD. This document was developed by multiple stakeholders, including UK paediatric and adult gastroenterology physicians, immunologists, transplant specialists, clinical geneticists, scientists, and research leads of UK genetic programmes, in partnership with patient representatives of several IBD and rare disease charities.


Asunto(s)
Gastroenterología , Enfermedades Inflamatorias del Intestino , Humanos , Niño , Adulto , Enfermedades Inflamatorias del Intestino/diagnóstico , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/terapia , Estado Nutricional , Genómica
17.
Cytotherapy ; 25(1): 82-93, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36220712

RESUMEN

BACKGROUND AIMS: Delayed immune reconstitution is a major challenge after matched unrelated donor (MUD) stem cell transplant (SCT). In this randomized phase 2 multi-center trial, Adoptive Immunotherapy with CD25/71 allodepleted donor T cells to improve immunity after unrelated donor stem cell transplant (NCT01827579), the authors tested whether allodepleted donor T cells (ADTs) can safely be used to improve immune reconstitution after alemtuzumab-based MUD SCT for hematological malignancies. METHODS: Patients received standard of care or up to three escalating doses of ADTs generated through CD25+/CD71+ immunomagnetic depletion. The primary endpoint of the study was circulating CD3+ T-cell count at 4 months post-SCT. Twenty-one patients were treated, 13 in the ADT arm and eight in the control arm. RESULTS: The authors observed a trend toward improved CD3+ T-cell count at 4 months in the ADT arm versus the control arm (230/µL versus 145/µL, P = 0.18), and three ADT patients achieved normal CD3+ T-cell count at 4 months (>700/µL). The rates of significant graft-versus-host disease (GVHD) were comparable in both cohorts, with grade ≥2 acute GVHD in seven of 13 and four of eight patients and chronic GVHD in three of 13 and three of eight patients in the ADT and control arms, respectively. CONCLUSIONS: These data suggest that adoptive transfer of ADTs is safe, but that in the MUD setting the benefit in terms of T-cell reconstitution is limited. This approach may be of more use in the context of more rigorous T-cell depletion.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Humanos , Linfocitos T , Donante no Emparentado , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Inmunoterapia
18.
J Crohns Colitis ; 17(1): 49-60, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35907265

RESUMEN

BACKGROUND AND AIMS: Inflammatory bowel diseases [IBD] have a complex polygenic aetiology. Rare genetic variants can cause monogenic intestinal inflammation. The impact of chromosomal aberrations and large structural abnormalities on IBD susceptibility is not clear. We aimed to comprehensively characterise the phenotype and prevalence of patients with IBD who possess rare numerical and structural chromosomal abnormalities. METHODS: We performed a systematic literature search of databases PubMed and Embase; and analysed gnomAD, Clinvar, the 100 000 Genomes Project, and DECIPHER databases. Further, we analysed international paediatric IBD cohorts to investigate the role of IL2RA duplications in IBD susceptibility. RESULTS: A meta-analysis suggests that monosomy X [Turner syndrome] is associated with increased expressivity of IBD that exceeds the population baseline (1.86%, 95% confidence interval [CI] 1.48 to 2.34%) and causes a younger age of IBD onset. There is little evidence that Klinefelter syndrome, Trisomy 21, Trisomy 18, mosaic Trisomy 9 and 16, or partial trisomies contribute to IBD susceptibility. Copy number analysis studies suggest inconsistent results. Monoallelic loss of X-linked or haploinsufficient genes is associated with IBD by hemizygous or heterozygous deletions, respectively. However, haploinsufficient gene deletions are detected in healthy reference populations, suggesting that the expressivity of IBD might be overestimated. One duplication that has previously been identified as potentially contributing to IBD risk involves the IL2RA/IL15R loci. Here we provide additional evidence that a microduplication of this locus may predispose to very-early-onset IBD by identifying a second case in a distinct kindred. However, the penetrance of intestinal inflammation in this genetic aberration is low [<2.6%]. CONCLUSIONS: Turner syndrome is associated with increased susceptibility to intestinal inflammation. Duplication of the IL2RA/IL15R loci may contribute to disease risk.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Síndrome de Turner , Humanos , Variaciones en el Número de Copia de ADN , Síndrome de Turner/complicaciones , Enfermedades Inflamatorias del Intestino/genética , Aberraciones Cromosómicas , Inflamación/complicaciones
19.
Front Immunol ; 13: 998967, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36203604

RESUMEN

There is an important unmet clinical need for fast turnaround next generation sequencing (NGS) to aid genetic diagnosis of patients with acute and sometimes catastrophic inflammatory presentations. This is imperative for patients who require precise and targeted treatment to prevent irreparable organ damage or even death. Acute and severe hyper- inflammation may be caused by primary immunodeficiency (PID) with immune dysregulation, or more typical autoinflammatory diseases in the absence of obvious immunodeficiency. Infectious triggers may be present in either immunodeficiency or autoinflammation. We compiled a list of 25 genes causing monogenetic immunological diseases that are notorious for their acute first presentation with fulminant inflammation and which may be amenable to specific treatment, including hemophagocytic lymphohistiocytosis (HLH); and autoinflammatory diseases that can present with early-onset stroke or other irreversible neurological inflammatory complications. We designed and validated a pipeline that enabled return of clinically actionable results in hours rather than weeks: the Rapid Autoinflammation Panel (RAP). We demonstrated accuracy of this new pipeline, with 100% sensitivity and 100% specificity. Return of results to clinicians was achieved within 48-hours from receiving the patient's blood or saliva sample. This approach demonstrates the potential significant diagnostic impact of NGS in acute medicine to facilitate precision medicine and save "life or limb" in these critical situations.


Asunto(s)
Enfermedades Autoinflamatorias Hereditarias , Enfermedades del Sistema Inmune , Síndromes de Inmunodeficiencia , Enfermedades Autoinflamatorias Hereditarias/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Síndromes de Inmunodeficiencia/genética , Inflamación/genética
20.
Cell Rep Methods ; 2(9): 100279, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-35975199

RESUMEN

Determining the protection an individual has to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants of concern (VoCs) is crucial for future immune surveillance, vaccine development, and understanding of the changing immune response. We devised an informative assay to current ELISA-based serology using multiplexed, baited, targeted proteomics for direct detection of multiple proteins in the SARS-CoV-2 anti-spike antibody immunocomplex. Serum from individuals collected after infection or first- and second-dose vaccination demonstrates this approach and shows concordance with existing serology and neutralization. Our assays show altered responses of both immunoglobulins and complement to the Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.1) VoCs and a reduced response to Omicron (B1.1.1529). We were able to identify individuals who had prior infection, and observed that C1q is closely associated with IgG1 (r > 0.82) and may better reflect neutralization to VoCs. Analyzing additional immunoproteins beyond immunoglobulin (Ig) G, provides important information about our understanding of the response to infection and vaccination.


Asunto(s)
Formación de Anticuerpos , COVID-19 , Humanos , Proteómica , SARS-CoV-2/genética , Inmunoglobulina G , Anticuerpos Antivirales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA