Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2764: 205-224, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38393597

RESUMEN

Organoids are 3D cultures of self-organized adult or pluripotent stem cells with an epithelial membrane enclosing a defined fluid-filled lumen. These organoids have been demonstrated with a wide range of organotypic tissue types, but the enclosed nature of the structure restricts access to the lumen and apical surface of the cell membrane. To increase the potential applications of organoids, new technologies are required to provide access to the lumen of the organoid and apical surface of the epithelial cell membrane to enable new biomedical studies. This chapter details a method to access the lumen and apical surface of an organoid utilizing a double-barrel pulled glass capillary and pressure-based pump. The organoid perfusion system uses a three-axis micromanipulator to position the double-barrel capillary to pierce the organoid with the tip of the capillary. Each barrel of the double-barrel capillary is controlled independently with the pressure-based pump to allow injection and removal of material into and from the lumen. Additionally, the organoid is immobilized with a custom-designed PDMS organoid holder. The design of the components for the organoid perfusion system and details on their use are presented here and can be utilized as the basis to enable a wide range of organoid studies including but not limited to modifying luminal contents and apical cell membrane interactions during organoid cultures, recapitulation of physiological flow within the normally static organoid lumen, and effects of mechanical strain on organoid cell development.


Asunto(s)
Intestinos , Células Madre Pluripotentes , Organoides , Diferenciación Celular , Perfusión
2.
Nanoscale Horiz ; 8(8): 1043-1053, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37221952

RESUMEN

Nanofluidic linearization and optical mapping of naked DNA have been reported in the research literature, and implemented in commercial instruments. However, the resolution with which DNA features can be resolved is still inherently limited by both Brownian motion and diffraction-limited optics. Direct analysis of native chromatin is further hampered by difficulty in electrophoretic manipulation, which is routinely used for DNA analysis. This paper describes the development of a three-layer, tunable, nanochannel system that enables non-electrophoretic linearization and immobilization of native chromatin. Furthermore, through careful selection of self-blinking fluorescent dyes and the design of the nanochannel system, we achieve direct stochastic optical reconstruction microscopy (dSTORM) super-resolution imaging of the linearized chromatin. As an initial demonstration, rDNA chromatin extracted from Tetrahymena is analyzed by multi-color imaging of total DNA, newly synthesized DNA, and newly synthesized histone H3. Our analysis reveals a relatively even distribution of newly synthesized H3 across two halves of the rDNA chromatin with palindromic symmetry, supporting dispersive nucleosome segregation. As a proof-of-concept study, our work achieves super-resolution imaging of native chromatin fibers linearized and immobilized in tunable nanochannels. It opens up a new avenue for collecting long-range and high-resolution epigenetic information as well as genetic information.


Asunto(s)
Cromatina , Histonas , Microscopía/métodos , Nucleosomas , ADN Ribosómico
3.
Micromachines (Basel) ; 13(1)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35056297

RESUMEN

Intestinal organoids are 3D cell structures that replicate some aspects of organ function and are organized with a polarized epithelium facing a central lumen. To enable more applications, new technologies are needed to access the luminal cavity and apical cell surface of organoids. We developed a perfusion system utilizing a double-barrel glass capillary with a pressure-based pump to access and modify the luminal contents of a human intestinal organoid for extended periods of time while applying cyclic cellular strain. Cyclic injection and withdrawal of fluorescent FITC-Dextran coupled with real-time measurement of fluorescence intensity showed discrete changes of intensity correlating with perfusion cycles. The perfusion system was also used to modify the lumen of organoids injected with GFP-expressing E. coli. Due to the low concentration and fluorescence of the E. coli, a novel imaging analysis method utilizing bacteria enumeration and image flattening was developed to monitor E. coli within the organoid. Collectively, this work shows that a double-barrel perfusion system provides constant luminal access and allows regulation of luminal contents and luminal mixing.

4.
ACS Appl Mater Interfaces ; 11(46): 43573-43580, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31702884

RESUMEN

Interfacial fracture and delamination of polymer interfaces can play a critical role in a wide range of applications, including fiber-reinforced composites, flexible electronics, and encapsulation layers for photovoltaics. However, owing to the low surface energy of many thermoplastics, adhesion to dissimilar material surfaces remains a critical challenge. In this work, we demonstrate that surface treatments using atomic layer deposition (ALD) on poly(methyl methacrylate) (PMMA) and fluorinated ethylene propylene (FEP) lead to significant increases in surface energy, without affecting the bulk mechanical response of the thermoplastic. After ALD film growth, the interfacial toughness of the PMMA-epoxy and FEP-epoxy interfaces increased by factors of up to 7 and 60, respectively. These results demonstrate the ability of ALD to engineer the adhesive properties of chemically inert surfaces. However, in the present case, the interfacial toughness was observed to decrease significantly with an increase in humidity. This was attributed to the phenomenon of stress-corrosion cracking associated with the reaction between Al2O3 and water and might have a significant implication for the design of these tailored interfaces.

5.
Cell Mol Gastroenterol Hepatol ; 6(1): 123-131.e1, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29928682

RESUMEN

The gastrointestinal (GI) tract regulates physiologic responses in complex ways beyond facilitating nutrient entry into the circulatory system. Because of the anatomic location of the GI tract, studying in vivo physiology of the human gut, including host cell interaction with the microbiota, is limited. GI organoids derived from human stem cells are gaining interest as they recapitulate in vivo cellular phenotypes and functions. An underdeveloped capability that would further enhance the utility of these miniature models of the GI tract is to use sensors to quantitatively characterize the organoid systems with high spatiotemporal resolution. In this review, we first discuss tools to capture changes in the fluid milieu of organoid cultures both in the organoid exterior as well as the luminal side of the organoids. The subsequent section describes approaches to characterize barrier functions across the epithelial layer of the GI organoids directly or after transferring the epithelial cells to a 2-dimensional culture format in Transwells or compartmentalized microchannel devices. The final section introduces recently developed bioengineered bacterial sensors that sense intestinal inflammation-related small molecules in the lumen using lambda cI/Cro genetic elements or fluorescence as readouts. Considering the small size and cystic shape of GI organoids, sensors used in conventional macroscopic intestinal models are often not suitable, particularly for time-lapse monitoring. Unmet needs for GI organoid analysis provides many opportunities for the development of noninvasive and miniaturized biosensors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA