Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 361
Filtrar
1.
Cancer Discov ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39270324

RESUMEN

Patients with head and neck squamous cell carcinomas (HNSCC) often have poor outcomes due to suboptimal risk-management and treatment strategies; yet integrating novel prognostic biomarkers into clinical practice is challenging. Here, we report the presence of multinucleated giant cells (MGC) - a type of macrophages - in tumors from patients with HNSCC, which are associated with a favorable prognosis in treatment-naive and preoperative-chemotherapy-treated patients. Importantly, MGC density increased in tumors following preoperative therapy, suggesting a role of these cells in the anti-tumoral response. To enable clinical translation of MGC density as a prognostic marker, we developed a deep-learning model to automate its quantification on routinely stained pathological whole slide images. Finally, we used spatial transcriptomic and proteomic approaches to describe the MGC-related tumor microenvironment and observed an increase in central memory CD4 T cells. We defined an MGC-specific signature resembling to TREM2-expressing mononuclear tumor associated macrophages, which co-localized in keratin tumor niches.

2.
Sci Immunol ; 9(99): eadp0344, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39241057

RESUMEN

Langerhans cells (LCs) are distinct among phagocytes, functioning both as embryo-derived, tissue-resident macrophages in skin innervation and repair and as migrating professional antigen-presenting cells, a function classically assigned to dendritic cells (DCs). Here, we demonstrate that both intrinsic and extrinsic factors imprint this dual identity. Using ablation of embryo-derived LCs in the murine adult skin and tracking differentiation of incoming monocyte-derived replacements, we found intrinsic intraepidermal heterogeneity. We observed that ontogenically distinct monocytes give rise to LCs. Within the epidermis, Jagged-dependent activation of Notch signaling, likely within the hair follicle niche, provided an initial site of LC commitment before metabolic adaptation and survival of monocyte-derived LCs. In the human skin, embryo-derived LCs in newborns retained transcriptional evidence of their macrophage origin, but this was superseded by DC-like immune modules after postnatal expansion. Thus, adaptation to adult skin niches replicates conditioning of LC at birth, permitting repair of the embryo-derived LC network.


Asunto(s)
Diferenciación Celular , Células de Langerhans , Monocitos , Piel , Células de Langerhans/inmunología , Células de Langerhans/citología , Animales , Monocitos/inmunología , Monocitos/citología , Diferenciación Celular/inmunología , Humanos , Piel/inmunología , Piel/citología , Ratones , Ratones Endogámicos C57BL , Femenino
3.
Sci Immunol ; 9(98): eado1227, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093958

RESUMEN

The lung is constantly exposed to airborne pathogens and particles that can cause alveolar damage. Hence, appropriate repair responses are essential for gas exchange and life. Here, we deciphered the spatiotemporal trajectory and function of an atypical population of macrophages after lung injury. Post-influenza A virus (IAV) infection, short-lived monocyte-derived Ly6G-expressing macrophages (Ly6G+ Macs) were recruited to the alveoli of lung perilesional areas. Ly6G+ Macs engulfed immune cells, exhibited a high metabolic potential, and clustered with alveolar type 2 epithelial cells (AT2s) in zones of active epithelial regeneration. Ly6G+ Macs were partially dependent on granulocyte-macrophage colony-stimulating factor and interleukin-4 receptor signaling and were essential for AT2-dependent alveolar regeneration. Similar macrophages were recruited in other models of injury and in the airspaces of lungs from patients with suspected pneumonia. This study identifies perilesional alveolar Ly6G+ Macs as a spatially restricted, short-lived macrophage subset promoting epithelial regeneration postinjury, thus representing an attractive therapeutic target for treating lung damage.


Asunto(s)
Antígenos Ly , Lesión Pulmonar , Macrófagos Alveolares , Ratones Endogámicos C57BL , Regeneración , Animales , Antígenos Ly/metabolismo , Antígenos Ly/inmunología , Ratones , Regeneración/inmunología , Lesión Pulmonar/inmunología , Macrófagos Alveolares/inmunología , Masculino , Humanos , Femenino , Infecciones por Orthomyxoviridae/inmunología , Alveolos Pulmonares/inmunología , Virus de la Influenza A/inmunología , Virus de la Influenza A/fisiología
4.
bioRxiv ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39211090

RESUMEN

Microglia are thought to originate exclusively from primitive macrophage progenitors in the yolk sac (YS) and to persist throughout life without much contribution from definitive hematopoiesis. Here, using lineage tracing, pharmacological manipulation, and RNA-sequencing, we elucidated the presence and characteristics of monocyte-derived macrophages (MDMs) in the brain parenchyma at baseline and during microglia repopulation, and defined the core transcriptional signatures of brain-engrafted MDMs. Lineage tracing mouse models revealed that MDMs transiently express CD206 during brain engraftment as CD206 + microglia precursors in the YS. We found that brain-engrafted MDMs exhibit transcriptional and epigenetic characteristics akin to meningeal macrophages, likely due to environmental imprinting within the meningeal space. Utilizing parabiosis and skull transplantation, we demonstrated that monocytes from both peripheral blood and skull bone marrow can repopulate microglia-depleted brains. Our results reveal the heterogeneous origins and cellular dynamics of brain parenchymal macrophages at baseline and in models of microglia depletion.

6.
Nat Commun ; 15(1): 6142, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39034339

RESUMEN

Myeloid cells are vital components of the immune system and have pivotal functions in orchestrating immune responses. Understanding their functions within the tumor microenvironment and their interactions with tumor-infiltrating lymphocytes presents formidable challenges across diverse cancer types, particularly with regards to cancer immunotherapies. Here, we explore tumor-infiltrating myeloid cells (TIMs) by conducting a pan-cancer analysis using single-cell transcriptomics across eight distinct cancer types, encompassing a total of 192 tumor samples from 129 patients. By examining gene expression patterns and transcriptional activities of TIMs in different cancer types, we discern notable alterations in abundance of TIMs and kinetic behaviors prior to and following immunotherapy. We also identify specific cell-cell interaction targets in immunotherapy; unique and shared regulatory profiles critical for treatment response; and TIMs associated with survival outcomes. Overall, our study illuminates the heterogeneity of TIMs and improves our understanding of tissue-specific and cancer-specific myeloid subsets within the context of tumor immunotherapies.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Células Mieloides , Neoplasias , Análisis de la Célula Individual , Microambiente Tumoral , Humanos , Células Mieloides/inmunología , Células Mieloides/metabolismo , Análisis de la Célula Individual/métodos , Neoplasias/inmunología , Neoplasias/genética , Neoplasias/terapia , Neoplasias/patología , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunoterapia/métodos , Linfocitos Infiltrantes de Tumor/inmunología , Regulación Neoplásica de la Expresión Génica , Transcriptoma , Perfilación de la Expresión Génica
7.
Sci Immunol ; 9(97): eadk3981, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058763

RESUMEN

Tumor-associated macrophages (TAMs) are a heterogeneous population of cells whose phenotypes and functions are shaped by factors that are incompletely understood. Herein, we asked when and where TAMs arise from blood monocytes and how they evolve during tumor development. We initiated pancreatic ductal adenocarcinoma (PDAC) in inducible monocyte fate-mapping mice and combined single-cell transcriptomics and high-dimensional flow cytometry to profile the monocyte-to-TAM transition. We revealed that monocytes differentiate first into a transient intermediate population of TAMs that generates two longer-lived lineages of terminally differentiated TAMs with distinct gene expression profiles, phenotypes, and intratumoral localization. Transcriptome datasets and tumor samples from patients with PDAC evidenced parallel TAM populations in humans and their prognostic associations. These insights will support the design of new therapeutic strategies targeting TAMs in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Monocitos , Neoplasias Pancreáticas , Macrófagos Asociados a Tumores , Animales , Monocitos/inmunología , Humanos , Ratones , Macrófagos Asociados a Tumores/inmunología , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Diferenciación Celular/inmunología , Ratones Endogámicos C57BL , Ratones Transgénicos
9.
bioRxiv ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38979166

RESUMEN

Monocyte-derived macrophages (mo-macs) drive immunosuppression in the tumor microenvironment (TME) and tumor-enhanced myelopoiesis in the bone marrow (BM) fuels these populations. Here, we performed paired transcriptome and chromatin analysis over the continuum of BM myeloid progenitors, circulating monocytes, and tumor-infiltrating mo-macs in mice and in patients with lung cancer to identify myeloid progenitor programs that fuel pro-tumorigenic mo-macs. Analyzing chromatin accessibility and histone mark changes, we show that lung tumors prime accessibility for Nfe2l2 (NRF2) in BM myeloid progenitors as a cytoprotective response to oxidative stress. NRF2 activity is sustained and increased during monocyte differentiation into mo-macs in the lung TME to regulate oxidative stress, in turn promoting metabolic adaptation, resistance to cell death, and contributing to immunosuppressive phenotype. NRF2 genetic deletion and pharmacological inhibition significantly reduced mo-macs' survival and immunosuppression in the TME, enabling NK and T cell therapeutic antitumor immunity and synergizing with checkpoint blockade strategies. Altogether, our study identifies a targetable epigenetic node of myeloid progenitor dysregulation that sustains immunoregulatory mo-macs in the TME.

10.
Nat Immunol ; 25(7): 1193-1206, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38834865

RESUMEN

Immune cells experience large cell shape changes during environmental patrolling because of the physical constraints that they encounter while migrating through tissues. These cells can adapt to such deformation events using dedicated shape-sensing pathways. However, how shape sensing affects immune cell function is mostly unknown. Here, we identify a shape-sensing mechanism that increases the expression of the chemokine receptor CCR7 and guides dendritic cell migration from peripheral tissues to lymph nodes at steady state. This mechanism relies on the lipid metabolism enzyme cPLA2, requires nuclear envelope tensioning and is finely tuned by the ARP2/3 actin nucleation complex. We also show that this shape-sensing axis reprograms dendritic cell transcription by activating an IKKß-NF-κB-dependent pathway known to control their tolerogenic potential. These results indicate that cell shape changes experienced by immune cells can define their migratory behavior and immunoregulatory properties and reveal a contribution of the physical properties of tissues to adaptive immunity.


Asunto(s)
Movimiento Celular , Células Dendríticas , Homeostasis , Ganglios Linfáticos , Ratones Endogámicos C57BL , Receptores CCR7 , Animales , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/citología , Receptores CCR7/metabolismo , Ratones , Movimiento Celular/inmunología , Forma de la Célula , FN-kappa B/metabolismo , Ratones Noqueados , Transducción de Señal/inmunología , Quinasa I-kappa B/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo
11.
Nat Commun ; 15(1): 4981, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862483

RESUMEN

Spatial omics data allow in-depth analysis of tissue architectures, opening new opportunities for biological discovery. In particular, imaging techniques offer single-cell resolutions, providing essential insights into cellular organizations and dynamics. Yet, the complexity of such data presents analytical challenges and demands substantial computing resources. Moreover, the proliferation of diverse spatial omics technologies, such as Xenium, MERSCOPE, CosMX in spatial-transcriptomics, and MACSima and PhenoCycler in multiplex imaging, hinders the generality of existing tools. We introduce Sopa ( https://github.com/gustaveroussy/sopa ), a technology-invariant, memory-efficient pipeline with a unified visualizer for all image-based spatial omics. Built upon the universal SpatialData framework, Sopa optimizes tasks like segmentation, transcript/channel aggregation, annotation, and geometric/spatial analysis. Its output includes user-friendly web reports and visualizer files, as well as comprehensive data files for in-depth analysis. Overall, Sopa represents a significant step toward unifying spatial data analysis, enabling a more comprehensive understanding of cellular interactions and tissue organization in biological systems.


Asunto(s)
Programas Informáticos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Análisis de la Célula Individual/métodos , Biología Computacional/métodos , Transcriptoma , Animales
12.
Cell Rep ; 43(5): 114250, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38762882

RESUMEN

Acute stroke triggers extensive changes to myeloid immune cell populations in the brain that may be targets for limiting brain damage and enhancing repair. Immunomodulatory approaches will be most effective with precise manipulation of discrete myeloid cell phenotypes in time and space. Here, we investigate how stroke alters mononuclear myeloid cell composition and phenotypes at single-cell resolution and key spatial patterns. Our results show that multiple reactive microglial states and monocyte-derived populations contribute to an extensive myeloid cell repertoire in post-stroke brains. We identify important overlaps and distinctions among different cell types/states that involve ontogeny- and spatial-related properties. Notably, brain connectivity with infarcted tissue underpins the pattern of local and remote altered cell accumulation and reactivity. Our discoveries suggest a global but anatomically governed brain myeloid cell response to stroke that comprises diverse phenotypes arising through intrinsic cell ontogeny factors interacting with exposure to spatially organized brain damage and neuro-axonal cues.


Asunto(s)
Encéfalo , Microglía , Células Mieloides , Fenotipo , Accidente Cerebrovascular , Animales , Encéfalo/patología , Accidente Cerebrovascular/patología , Células Mieloides/metabolismo , Microglía/patología , Microglía/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/metabolismo , Monocitos/patología
13.
Immunity ; 57(7): 1567-1585.e5, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38821051

RESUMEN

Conventional dendritic cells (cDC) are antigen-presenting cells comprising cDC1 and cDC2, responsible for priming naive CD8+ and CD4+ T cells, respectively. Recent studies have unveiled cDC2 heterogeneity and identified various cDC2 progenitors beyond the common DC progenitor (CDP), hinting at distinct cDC2 lineages. By generating Cd300ciCre-hCD2R26tdTomato reporter mice, we identified a bone marrow pro-cDC2 progenitor exclusively generating cDC2 in vitro and in vivo. Single-cell analyses and multiparametric flow cytometry demonstrated that pro-cDC2 encompasses myeloid-derived pre-cDC2 and lymphoid-derived plasmacytoid DC (pDC)-like precursors differentiating into a transcriptionally convergent cDC2 phenotype. Cd300c-traced cDC2 had distinct transcriptomic profiles, phenotypes, and tissue distributions compared with Ms4a3CreR26tdTomato lineage-traced DC3, a monocyte-DC progenitor (MDP)-derived subset that bypasses CDP. Mice with reduced Cd300c-traced cDC2 showed impaired humoral responses to T cell-dependent antigens. We conclude that progenitors of distinct lineages shape the diversity of mature cDC2 across tissues. Thus, ontogenesis may impact tissue immune responses.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Células Dendríticas , Animales , Células Dendríticas/inmunología , Ratones , Diferenciación Celular/inmunología , Ratones Endogámicos C57BL , Análisis de la Célula Individual , Células Madre/citología , Células Madre/inmunología , Células Madre/metabolismo , Ratones Transgénicos
14.
Cancer Cell ; 42(5): 747-758, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38670090

RESUMEN

Cancer is a progressive disease that can develop and evolve over decades, with inflammation playing a central role at each of its stages, from tumor initiation to metastasis. In this context, macrophages represent well-established bridges reciprocally linking inflammation and cancer via an array of diverse functions that have spurred efforts to classify them into subtypes. Here, we discuss the intertwines between macrophages, inflammation, and cancer with an emphasis on temporal dynamics of macrophage diversity and functions in pre-malignancy and cancer. By instilling temporal dynamism into the more static classic view of tumor-associated macrophage biology, we propose a new framework to better contextualize their significance in the inflammatory processes that precede and result from the onset of cancer and shape its evolution.


Asunto(s)
Inflamación , Neoplasias , Microambiente Tumoral , Macrófagos Asociados a Tumores , Animales , Humanos , Inflamación/inmunología , Inflamación/patología , Macrófagos/inmunología , Neoplasias/inmunología , Neoplasias/patología , Microambiente Tumoral/inmunología , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo
15.
Nat Commun ; 15(1): 2113, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459052

RESUMEN

Macrophages are abundant immune cells in the microenvironment of diffuse large B-cell lymphoma (DLBCL). Macrophage estimation by immunohistochemistry shows varying prognostic significance across studies in DLBCL, and does not provide a comprehensive analysis of macrophage subtypes. Here, using digital spatial profiling with whole transcriptome analysis of CD68+ cells, we characterize macrophages in distinct spatial niches of reactive lymphoid tissues (RLTs) and DLBCL. We reveal transcriptomic differences between macrophages within RLTs (light zone /dark zone, germinal center/ interfollicular), and between disease states (RLTs/ DLBCL), which we then use to generate six spatially-derived macrophage signatures (MacroSigs). We proceed to interrogate these MacroSigs in macrophage and DLBCL single-cell RNA-sequencing datasets, and in gene-expression data from multiple DLBCL cohorts. We show that specific MacroSigs are associated with cell-of-origin subtypes and overall survival in DLBCL. This study provides a spatially-resolved whole-transcriptome atlas of macrophages in reactive and malignant lymphoid tissues, showing biological and clinical significance.


Asunto(s)
Linfoma de Células B Grandes Difuso , Humanos , Pronóstico , Linfoma de Células B Grandes Difuso/patología , Perfilación de la Expresión Génica , Transcriptoma , Centro Germinal/patología , Microambiente Tumoral/genética
16.
J Extracell Vesicles ; 13(3): e12420, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38490958

RESUMEN

High-grade serous carcinoma of the ovary, fallopian tube and peritoneum (HGSC), the most common type of ovarian cancer, ranks among the deadliest malignancies. Many HGSC patients have excess fluid in the peritoneum called ascites. Ascites is a tumour microenvironment (TME) containing various cells, proteins and extracellular vesicles (EVs). We isolated EVs from patients' ascites by orthogonal methods and analyzed them by mass spectrometry. We identified not only a set of 'core ascitic EV-associated proteins' but also defined their subset unique to HGSC ascites. Using single-cell RNA sequencing data, we mapped the origin of HGSC-specific EVs to different types of cells present in ascites. Surprisingly, EVs did not come predominantly from tumour cells but from non-malignant cell types such as macrophages and fibroblasts. Flow cytometry of ascitic cells in combination with analysis of EV protein composition in matched samples showed that analysis of cell type-specific EV markers in HGSC has more substantial prognostic potential than analysis of ascitic cells. To conclude, we provide evidence that proteomic analysis of EVs can define the cellular composition of HGSC TME. This finding opens numerous avenues both for a better understanding of EV's role in tumour promotion/prevention and for improved HGSC diagnostics.


Asunto(s)
Cistadenocarcinoma Seroso , Vesículas Extracelulares , Neoplasias Ováricas , Humanos , Femenino , Ascitis/metabolismo , Ascitis/patología , Microambiente Tumoral , Proteómica , Cistadenocarcinoma Seroso/diagnóstico , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Vesículas Extracelulares/metabolismo , Neoplasias Ováricas/diagnóstico
17.
Cell ; 187(4): 962-980.e19, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309258

RESUMEN

Microglia (MG), the brain-resident macrophages, play major roles in health and disease via a diversity of cellular states. While embryonic MG display a large heterogeneity of cellular distribution and transcriptomic states, their functions remain poorly characterized. Here, we uncovered a role for MG in the maintenance of structural integrity at two fetal cortical boundaries. At these boundaries between structures that grow in distinct directions, embryonic MG accumulate, display a state resembling post-natal axon-tract-associated microglia (ATM) and prevent the progression of microcavities into large cavitary lesions, in part via a mechanism involving the ATM-factor Spp1. MG and Spp1 furthermore contribute to the rapid repair of lesions, collectively highlighting protective functions that preserve the fetal brain from physiological morphogenetic stress and injury. Our study thus highlights key major roles for embryonic MG and Spp1 in maintaining structural integrity during morphogenesis, with major implications for our understanding of MG functions and brain development.


Asunto(s)
Encéfalo , Microglía , Axones , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Macrófagos/fisiología , Microglía/patología , Morfogénesis
18.
Immunity ; 57(2): 349-363.e9, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38309272

RESUMEN

Microglial reactivity to injury and disease is emerging as a heterogeneous, dynamic, and crucial determinant in neurological disorders. However, the plasticity and fate of disease-associated microglia (DAM) remain largely unknown. We established a lineage tracing system, leveraging the expression dynamics of secreted phosphoprotein 1(Spp1) to label and track DAM-like microglia during brain injury and recovery. Fate mapping of Spp1+ microglia during stroke in juvenile mice revealed an irreversible state of DAM-like microglia that were ultimately eliminated from the injured brain. By contrast, DAM-like microglia in the neonatal stroke models exhibited high plasticity, regaining a homeostatic signature and integrating into the microglial network after recovery. Furthermore, neonatal injury had a lasting impact on microglia, rendering them intrinsically sensitized to subsequent immune challenges. Therefore, our findings highlight the plasticity and innate immune memory of neonatal microglia, shedding light on the fate of DAM-like microglia in various neuropathological conditions.


Asunto(s)
Lesiones Encefálicas , Accidente Cerebrovascular , Animales , Ratones , Microglía , Encéfalo/metabolismo , Osteopontina/metabolismo
20.
J Immunol ; 212(6): 1012-1021, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38251913

RESUMEN

It is becoming clear that every organ is seeded by a population of fetal liver-derived macrophages that are replaced at different rates by monocyte-derived macrophages. Using the Ms4a3tdTomato reporter mouse that reports on monocyte-derived alveolar macrophages (Mo-AMs) and our ability to examine AM function using our multichannel intravital microscopy, we examined the fetal-liver derived alveolar macrophage (FL-AM) and Mo-AM populations within the same mouse under various environmental conditions. The experiments unveiled that AMs migrated from alveolus to alveolus and phagocytosed bacteria identically regardless of ontogenic origin. Using 50 PFU of influenza A virus (IAV) determined using the Madin-Darby canine kidney (MDCK) cell line, we noted that both populations were susceptible to IAV-induced immunoparalysis, which also led to impaired phagocytosis of secondary bacterial infections. Both FL-AMs and Mo-AMs were trained by ß-glucan to resist IAV-induced paralysis. Over time (40 wk), Mo-AMs began to outperform FL-AMs, although both populations were still sensitive to IAV. Our data also show that clodronate depletion of AMs leads to replenishment, but by FL-AMs, and these macrophages do show some functional impairment for a limited time. Overall, the system is designed such that new macrophages rapidly assume the function of tissue-resident macrophages when both populations are examined in an identical environment. These data do differ from artificial depletion methods that compare Mo-AMs and FL-AMs.


Asunto(s)
Coinfección , Virus de la Influenza A , Animales , Perros , Ratones , Pulmón , Macrófagos , Macrófagos Alveolares , Fagocitosis , Hígado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA