RESUMEN
BACKGROUND AND PURPOSE: Several NCCT expansion markers have been proposed to improve the prediction of hematoma expansion. We retrospectively evaluated the predictive accuracy of 9 expansion markers. MATERIALS AND METHODS: Patients admitted for intracerebral hemorrhage within 24 hours of last seen well were retrospectively included from April 2016 to April 2020. The primary outcome was revised hematoma expansion, defined as any of a ≥6-mL or ≥33% increase in intracerebral hemorrhage volume, a ≥ 1-mL increase in intraventricular hemorrhage volume, or de novo intraventricular hemorrhage. We assessed the predictive accuracy of expansion markers and determined their association with revised hematoma expansion. RESULTS: We included 124 patients, of whom 51 (41%) developed revised hematoma expansion. The sensitivity of each marker for the prediction of revised hematoma expansion ranged from 4% to 78%; the specificity, 37%-97%; the positive likelihood ratio, 0.41-7.16; and the negative likelihood ratio, 0.49-1.06. By means of univariable logistic regressions, 5 markers were significantly associated with revised hematoma expansion: black hole (OR = 8.66; 95% CI, 2.15-58.14; P = .007), hypodensity (OR = 3.18; 95% CI, 1.49-6.93; P = .003), blend (OR = 2.90; 95% CI, 1.08-8.38; P = .04), satellite (OR = 2.84; 95% CI, 1.29-6.61; P = .01), and Barras shape (OR = 2.41, 95% CI; 1.17-5.10; P = .02). In multivariable models, only the black hole marker remained independently associated with revised hematoma expansion (adjusted OR = 5.62; 95% CI, 1.23-40.23; P = .03). CONCLUSIONS: No single NCCT expansion marker had both high sensitivity and specificity for the prediction of revised hematoma expansion. Improved image-based analysis is needed to tackle limitations associated with current NCCT-based expansion markers.
Asunto(s)
Hemorragia Cerebral , Tomografía Computarizada por Rayos X , Humanos , Estudios Retrospectivos , Hemorragia Cerebral/diagnóstico por imagen , Hemorragia Cerebral/complicaciones , Biomarcadores , Hematoma/diagnóstico por imagenRESUMEN
BACKGROUND: Arterial perforation is a potentially serious complication during endovascular thrombectomy. PURPOSE: Our aim was to describe interventional approaches after arterial perforation during endovascular thrombectomy and to determine whether reperfusion remains associated with favorable outcome despite this complication. DATA SOURCES: Data from consecutive patients with acute stroke undergoing endovascular thrombectomy were retrospectively collected between 2015 to 2020 from a single-center cohort, and a systematic review was performed using PubMed, EMBASE, and Ovid MEDLINE up to June 2020. STUDY SELECTION: Articles reporting functional outcome after arterial perforation during endovascular thrombectomy were selected. DATA ANALYSIS: Functional outcomes of patients achieving successful reperfusion (TICI 2b/3) were compared with outcomes of those with unsuccessful reperfusion in our single-center cohort. We then summarized the literature review to describe interventional approaches and outcomes after arterial perforation during endovascular thrombectomy. DATA SYNTHESIS: In our single-center cohort, 1419 patients underwent endovascular thrombectomy, among whom 32 (2.3%) had vessel perforation and were included in the analysis. The most common hemostatic strategy was watchful waiting (71% of cases). Patients with successful reperfusion had a higher proportion of favorable 90-day mRS scores (60% versus 12.5%; P = .006) and a lower mortality rate (13.3% versus 56.3%, P = .01) than patients without successful reperfusion. Thirteen articles were included in the systematic review. Successful reperfusion also appeared to be associated with better outcomes. LIMITATIONS: Given the low number of published reports, we performed only a descriptive analysis. CONCLUSIONS: Arterial perforation during endovascular thrombectomy is rare but is associated with high mortality rates and poor outcome. However, successful reperfusion remains correlated with favorable outcome in these patients.
Asunto(s)
Isquemia Encefálica , Procedimientos Endovasculares , Accidente Cerebrovascular , Humanos , Estudios Retrospectivos , Procedimientos Endovasculares/efectos adversos , Resultado del Tratamiento , Trombectomía/efectos adversos , Reperfusión/efectos adversos , Accidente Cerebrovascular/etiología , Isquemia Encefálica/complicacionesRESUMEN
BACKGROUND AND PURPOSE: Although blood pressure reduction has been postulated to result in a fall in cerebral perfusion pressure in patients with intracerebral hemorrhage, the latter is rarely measured. We assessed regional cerebral perfusion pressure in patients with intracerebral hemorrhage by using CT perfusion source data. MATERIALS AND METHODS: Patients with acute primary intracerebral hemorrhage were randomized to target systolic blood pressures of <150 mm Hg (n = 37) or <180 mm Hg (n = 36). Regional maps of cerebral blood flow, cerebral perfusion pressure, and cerebrovascular resistance were generated by using CT perfusion source data, obtained 2 hours after randomization. RESULTS: Perihematoma cerebral blood flow (38.7 ± 11.9 mL/100 g/min) was reduced relative to contralateral regions (44.1 ± 11.1 mL/100 g/min, P = .001), but cerebral perfusion pressure was not (14.4 ± 4.6 minutes(-1) versus 14.3 ± 4.8 minutes(-1), P = .93). Perihematoma cerebrovascular resistance (0.34 ± 0.11 g/mL) was higher than that in the contralateral region (0.30 ± 0.10 g/mL, P < .001). Ipsilateral and contralateral cerebral perfusion pressure in the external (15.0 ± 4.6 versus 15.6 ± 5.3 minutes(-1), P = .15) and internal (15.0 ± 4.8 versus 15.0 ± 4.8 minutes(-1), P = .90) borderzone regions were all similar. Borderzone cerebral perfusion pressure was similar to mean global cerebral perfusion pressure (14.7 ± 4.7 minutes(-1), P ≥ .29). Perihematoma cerebral perfusion pressure did not differ between blood pressure treatment groups (13.9 ± 5.5 minutes(-1) versus 14.8 ± 3.4 minutes(-1), P = .38) or vary with mean arterial pressure (r = -0.08, [-0.10, 0.05]). CONCLUSIONS: Perihematoma cerebral perfusion pressure is maintained despite increased cerebrovascular resistance and reduced cerebral blood flow. Aggressive antihypertensive therapy does not affect perihematoma or borderzone cerebral perfusion pressure. Maintenance of cerebral perfusion pressure provides physiologic support for the safety of blood pressure reduction in intracerebral hemorrhage.