Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Insect Sci ; 24(3)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38805657

RESUMEN

Despite the use of various integrated pest management strategies to control the honey bee mite, Varroa destructor, varroosis remains the most important threat to honey bee colony health in many countries. In Canada, ineffective varroa control is linked to high winter colony losses and new treatment options, such as a summer treatment, are greatly needed. In this study, a total of 135 colonies located in 6 apiaries were submitted to one of these 3 varroa treatment strategies: (i) an Apivar® fall treatment followed by an oxalic acid (OA) treatment by dripping method; (ii) same as in (i) with a summer treatment consisting of formic acid (Formic Pro™); and (iii) same as in (i) with a summer treatment consisting of slow-release OA/glycerin pads (total of 27 g of OA/colony). Treatment efficacy and their effects on colony performance, mortality, varroa population, and the abundance of 6 viruses (acute bee paralysis virus [ABPV], black queen cell virus [BQCV], deformed wing virus variant A [DWV-A], deformed wing virus variant B [DWV-B], Israeli acute paralysis virus [IAPV], and Kashmir bee virus [KBV]) were assessed. We show that a strategy with a Formic Pro summer treatment tended to reduce the varroa infestation rate to below the economic fall threshold of 15 daily varroa drop, which reduced colony mortality significantly but did not reduce the prevalence or viral load of the 6 tested viruses at the colony level. A strategy with glycerin/OA pads reduced hive weight gain and the varroa infestation rate, but not below the fall threshold. A high prevalence of DWV-B was measured in all groups, which could be related to colony mortality.


Asunto(s)
Apicultura , Estaciones del Año , Varroidae , Carga Viral , Animales , Varroidae/fisiología , Abejas/parasitología , Abejas/virología , Apicultura/métodos , Acaricidas , Formiatos/farmacología , Canadá
2.
Curr Biol ; 34(9): 1893-1903.e3, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38636513

RESUMEN

Honey bees play a major role in crop pollination but have experienced declining health throughout most of the globe. Despite decades of research on key honey bee stressors (e.g., parasitic Varroa destructor mites and viruses), researchers cannot fully explain or predict colony mortality, potentially because it is caused by exposure to multiple interacting stressors in the field. Understanding which honey bee stressors co-occur and have the potential to interact is therefore of profound importance. Here, we used the emerging field of systems theory to characterize the stressor networks found in honey bee colonies after they were placed in fields containing economically valuable crops across Canada. Honey bee stressor networks were often highly complex, with hundreds of potential interactions between stressors. Their placement in crops for the pollination season generally exposed colonies to more complex stressor networks, with an average of 23 stressors and 307 interactions. We discovered that the most influential stressors in a network-those that substantively impacted network architecture-are not currently addressed by beekeepers. Finally, the stressor networks showed substantial divergence among crop systems from different regions, which is consistent with the knowledge that some crops (e.g., highbush blueberry) are traditionally riskier to honey bees than others. Our approach sheds light on the stressor networks that honey bees encounter in the field and underscores the importance of considering interactions among stressors. Clearly, addressing and managing these issues will require solutions that are tailored to specific crops and regions and their associated stressor networks.


Asunto(s)
Productos Agrícolas , Polinización , Abejas/fisiología , Abejas/parasitología , Animales , Varroidae/fisiología , Canadá , Estrés Fisiológico , Apicultura/métodos
3.
Plant Methods ; 19(1): 120, 2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37925401

RESUMEN

BACKGROUND: The mutualistic interaction between entomophilous plants and pollinators is fundamental to the structure of most terrestrial ecosystems. The sensitive nature of this relationship has been disrupted by anthropogenic modifications to natural landscapes, warranting development of new methods for exploring this trophic interaction. Characterizing the composition of pollen collected by pollinators, e.g. Apis mellifera, is a common means of exploring this relationship, but traditional methods of microscopic pollen assessment are laborious and limited in their scope. The development of pollen metabarcoding as a method of rapidly characterizing the abundance and diversity of pollen within mixed samples presents a new frontier for this type of work, but metabarcoding may have limitations, and validation is warranted before any suite of primers can be confidently used in a research program. We set out to evaluate the utility of an integrative approach, using a set of established primers (ITS2 and rbcL) versus melissopalynological analysis for characterizing 27 mixed-pollen samples from agricultural sites across Canada. RESULTS: Both individual markers performed well relative to melissopalynology at the family level with decreases in the strength of correlation and linear model fits at the genus level. Integrating data from both markers together via a multi-locus approach provided the best rank-based correlation between metagenetic and melissopalynological data at both the genus (ρ = 0.659; p < 0.001) and family level (ρ = 0.830; p < 0.001). Species accumulation curves indicated that, after controlling for sampling effort, melissopalynological characterization provides similar or higher species richness estimates than either marker. The higher number of plant species discovered via the metabarcoding approach simply reflects the vastly greater sampling effort in comparison to melissopalynology. CONCLUSIONS: Pollen metabarcoding performed well at characterizing the composition of mixed pollen samples relative to a traditional melissopalynological approach. Limitations to the quantitative application of this method can be addressed by adopting a multi-locus approach that integrates information from multiple markers.

4.
Front Physiol ; 14: 1172859, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37485064

RESUMEN

The honeybee is an important species for the agri-food and pharmaceutical industries through bee products and crop pollination services. However, honeybee health is a major concern, because beekeepers in many countries are experiencing significant colony losses. This phenomenon has been linked to the exposure of bees to multiple stresses in their environment. Indeed, several biotic and abiotic stressors interact with bees in a synergistic or antagonistic way. Synergistic stressors often act through a disruption of their defense systems (immune response or detoxification). Antagonistic interactions are most often caused by interactions between biotic stressors or disruptive activation of bee defenses. Honeybees have developed behavioral defense strategies and produce antimicrobial compounds to prevent exposure to various pathogens and chemicals. Expanding our knowledge about these processes could be used to develop strategies to shield bees from exposure. This review aims to describe current knowledge about the exposure of honeybees to multiple stresses and the defense mechanisms they have developed to protect themselves. The effect of multi-stress exposure is mainly due to a disruption of the immune response, detoxification, or an excessive defense response by the bee itself. In addition, bees have developed defenses against stressors, some behavioral, others involving the production of antimicrobials, or exploiting beneficial external factors.

5.
J Vet Diagn Invest ; 35(6): 655-663, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37139827

RESUMEN

The genetic selection of honey bees (Apis mellifera) possessing specific social hygienic behaviors offers the beekeeping industry the possibility of controlling the Varroa destructor parasite and thus reducing its dependence on acaricides. However, the links between these behavioral traits are not yet well defined, which limits genetic progress in breeding programs. We measured the following behavioral varroa resistance traits: freeze-kill brood (FKB) and pin-kill brood (PKB) assays, varroa-sensitive hygiene (VSH), pupae removal, mite non-reproduction (MNR), and recapping activity. We found 2 negative and significant relationships: 1) between the recapping of cells infested with varroa and the total number of recapped cells, and 2) between the recapping of cells infested with varroa and VSH. We also selected the best predictive model of varroa infestation levels using the "step-wise" approach based on the Akaike information criterion. Our model revealed that MNR and FKB were significantly related to the varroa population levels, with a negative relationship; recapping was significantly related to mite infestation levels, with a positive relationship. Thus, a higher MNR or FKB score was linked to lower levels of mite infestation in colonies on August 14 (prior to fall infestation treatments); a higher recapping activity was linked to a higher level of mite infestation. Recapping behavior could be a useful trait to aid the selection of varroa-resistant bee lineages.


Asunto(s)
Infestaciones por Ácaros , Varroidae , Animales , Abejas , Varroidae/genética , Reproducción , Infestaciones por Ácaros/parasitología , Infestaciones por Ácaros/veterinaria , Fenotipo , Higiene
6.
Insects ; 14(3)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36975986

RESUMEN

Controlling mating in the honeybee (Apis mellifera) is part of one of the greatest challenges for the beekeeping industry's genetic selection programs due to specific characteristics of their reproduction. Several techniques for supervising honeybee mating with relative effective control have been developed over the years to allow honeybee selection. As part of this project, we compared the genetic gains for several colony performance traits, obtained using the BLUP-animal method, according to the selection pressure applied in controlled reproduction (directed fertilization versus instrumental insemination). Our results show similar genetic gains for hygienic behavior and honey production between colonies whether queens were fertilized naturally or via instrumental insemination, as well as similar or lower genetic gains for colonies with queens inseminated for spring development. In addition, we noticed greater fragility in queens following insemination. These findings show that instrumental insemination is an effective tool for reproductive control in genetic selection and for estimating breeding values more precisely. However, this technique does not result in queens of superior genetic quality for commercial purposes.

7.
Microorganisms ; 10(3)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35336069

RESUMEN

Including probiotics in honeybee nutrition represents a promising solution for mitigating diseases, and recent evidence suggests that various microbes possess mechanisms that can bioremediate environmental pollutants. Thus, the use of probiotics capable of degrading pesticides used in modern agriculture would help to both reduce colony losses due to the exposure of foragers to these toxic molecules and improve honeybee health and wellbeing globally. We conducted in vitro experiments to isolate and identify probiotic candidates from bacterial isolates of the honeybee gut (i.e., endogenous strains) according to their ability to (i) grow in contact with three sublethal concentrations of the pesticide clothianidin (0.15, 1 and 10 ppb) and (ii) degrade clothianidin at 0.15 ppb. The isolated bacterial strains were indeed able to grow in contact with the three sublethal concentrations of clothianidin. Bacterial growth rate differed significantly depending on the probiotic candidate and the clothianidin concentration used. Clothianidin was degraded by seven endogenous honeybee gut bacteria, namely Edwardsiella sp., two Serratia sp., Rahnella sp., Pantoea sp., Hafnia sp. and Enterobacter sp., measured within 72 h under in vitro conditions. Our findings highlight that endogenous bacterial strains may constitute the base material from which to develop a promising probiotic strategy to mitigate the toxic effects of clothianidin exposure on honeybee colony health.

8.
PLoS One ; 17(1): e0263273, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35100308

RESUMEN

Many pathogens and parasites have evolved to overwhelm and suppress their host's immune system. Nevertheless, the interactive effects of these agents on colony productivity and wintering success have been relatively unexplored, particularly in large-scale phenomic studies. As a defense mechanism, honey bees have evolved remarkable social behaviors to defend against pathogen and parasite challenges, which reduce the impact of disease and improve colony health. To investigate the complex role of pathogens, parasites and social immunity behaviors in relation to colony productivity and outcomes, we extensively studied colonies at several locations across Canada for two years. In 2016 and 2017, colonies founded with 1-year-old queens of diverse genetic origin were evaluated, which represented a generalized subset of the Canadian bee population. During each experimental year (May through April), we collected phenotypic data and sampled colonies for pathogen analysis in a standardized manner. Measures included: colony size and productivity (colony weight, cluster size, honey production, and sealed brood population), social immunity traits (hygienic behavior, instantaneous mite population growth rate, and grooming behavior), as well as quantification of gut parasites (Nosema spp., and Lotmaria passim), viruses (DWV-A, DWV-B, BQCV and SBV) and external parasites (Varroa destructor). Our goal was to examine: 1) correlations between pathogens and colony phenotypes; 2) the dynamics of pathogens and parasites on colony phenotypes and productivity traits; and 3) the effects of social immunity behaviors on colony pathogen load. Our results show that colonies expressing high levels of some social immunity behaviors were associated with low levels of pathogens/parasites, including viruses, Nosema spp., and V. destructor. In addition, we determined that elevated viral and Nosema spp. levels were associated with low levels of colony productivity, and that five out of six pathogenic factors measured were negatively associated with colony size and weight in both fall and spring periods. Finally, this study also provides information about the incidence and abundance of pathogens, colony phenotypes, and further disentangles their inter-correlation, so as to better understand drivers of honey bee colony health and productivity.


Asunto(s)
Abejas/parasitología , Abejas/virología , Conducta Animal/fisiología , Salud , Interacciones Huésped-Patógeno , Fenómica , Animales , Canadá , Geografía , Miel , Modelos Lineales , Parásitos , Fenotipo , Tamaño de la Muestra , Estaciones del Año , Conducta Social , Varroidae
9.
Microorganisms ; 9(11)2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34835409

RESUMEN

Pesticides are increasing honeybee (Apis mellifera) death rates globally. Clothianidin neonicotinoid appears to impair the microbe-immunity axis. We conducted cage experiments on newly emerged bees that were 4-6 days old and used a 16S rRNA metataxonomic approach to measure the impact of three sublethal clothianidin concentrations (0.1, 1 and 10 ppb) on survival, sucrose syrup consumption and gut microbiota community structure. Exposure to clothianidin significantly increased mortality in the three concentrations compared to controls. Interestingly, the lowest clothianidin concentration was associated with the highest mortality, and the medium concentration with the highest food intake. Exposure to clothianidin induced significant variation in the taxonomic distribution of gut microbiota activity. Co-abundance network analysis revealed local dysbiosis signatures specific to each gut section (midgut, ileum and rectum) were driven by specific taxa. Our findings confirm that exposure to clothianidin triggers a reshuffling of beneficial strains and/or potentially pathogenic taxa within the gut, suggesting a honeybee's symbiotic defense systems' disruption, such as resistance to microbial colonization. This study highlights the role of weak transcriptional activity taxa in maintaining a stable honeybee gut microbiota. Finally, the early detection of gut dysbiosis in honeybees is a promising biomarker in hive management for assessing the impact exposure to sublethal xenobiotics.

10.
Environ Monit Assess ; 193(11): 740, 2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34674037

RESUMEN

Honeybees have been used in Europe as environmental bioindicators for heavy metals and polycyclic aromatic hydrocarbons (PAHs). However, their potential has been little explored in North America, especially between environments which have similar pollution levels. Many urban residents and stakeholders are concerned with air quality, mainly in regard to gradients of exposure to industrial pollution between deprived and privileged subpopulation. Thus, the aim of this study was to evaluate the use of honeybees as bioindicators to assess exposure to heavy metals and PAHs in Québec City, Canada, in different socioeconomic districts of Quebec City (deprivation index). Honeybees were sampled over a 5-month period (May to September) at six locations distributed in two urban areas that are distinct geomorphologically and socioeconomically (lower town socio-economically deprived and upper town socioeconomically privileged) and two control rural locations. Six PAHs were analyzed by ultra-performance liquid chromatography (UPLC), while four heavy metals were analyzed by inductively coupled plasma mass spectrometry. Arsenic was the only measured pollutant that showed a significant gradient of exposure between rural and urban environments, but also between the two urban areas. Furthermore, we were able to detect significant differences at certain sampling times for heavy metals and PAHs. Overall, the results show that honeybees are sensitive enough to detect differences between the differential urban environments of a city presumed to have similar pollution levels and therefore could be used when potential socio-environmental inequalities are present.


Asunto(s)
Monitoreo Biológico , Hidrocarburos Policíclicos Aromáticos , Animales , Abejas , Ciudades , Monitoreo del Ambiente , Hidrocarburos Policíclicos Aromáticos/análisis , Factores Socioeconómicos
11.
Insects ; 11(9)2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32882855

RESUMEN

Genetic selection has led to spectacular advances in animal production in many domestic species. However, it is still little applied to honey bees (Apis mellifera), whose complex genetic and reproductive characteristics are a challenge to model statistically. Advances in informatics now enable creation of a statistical model consistent with honey bee genetics, and, consequently, genetic selection for this species. The aim of this project was to determine the genetic parameters of several traits important for Canadian beekeepers with a view to establishing a breeding program in a northern context. Our results show that the five traits measured (Varroa destructor infestation, spring development, honey production, winter consumption, and hygienic behavior) are heritable. Thus, the rate of V. destructor infestation has a high heritability (h2 = 0.44 ± 0.56), spring development and honey production have a medium heritability (respectively, h2 = 0.30 ± 0.14 and h2 = 0.20 ± 0.13), and winter consumption and hygienic behavior have a low heritability (respectively, h2 = 0.11 ± 0.09 and h2 = 0.18 ± 0.13). Furthermore, the genetic correlations between these traits are all positive or null, except between hygienic behavior and V. destructor infestation level. These genetic parameters will be instrumental to the development of a selection index that will be used to improve the capacity of honey bees to thrive in northern conditions.

12.
Microorganisms ; 8(8)2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32751209

RESUMEN

Microbial symbionts inhabiting the honeybee gut (i.e., gut microbiota) are essential for food digestion, immunity, and gut protection of their host. The taxonomic composition of the gut microbiota is dynamic throughout the honeybee life cycle and the foraging season. However, it remains unclear how drastic changes occurring in winter, such as food shortage and cold weather, impact gut microbiota dynamics. The objective of this study was to characterize the gut microbiota of the honeybee during the overwintering period in a northern temperate climate in Canada. The microbiota of nine honeybee colonies was characterized by metataxonomy of 16S rDNA between September 2017 and June 2018. Overall, the results showed that microbiota taxonomic composition experienced major compositional shifts in fall and spring. From September to November, Enterobacteriaceae decreased, while Neisseriaceae increased. From April to June, Orbaceae increased, whereas Rhizobiaceae nearly disappeared. Bacterial diversity of the gut microbiota decreased drastically before and after overwintering, but it remained stable during winter. We conclude that the honeybee gut microbiota is likely to be impacted by the important meteorological and dietary changes that take place before and after the overwintering period. Laboratory trials are needed to determine how the observed variations affect the honeybee health.

13.
PLoS One ; 15(1): e0227970, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31978125

RESUMEN

Commercial lowbush blueberry (Vaccinium angustifolium Ait.) and cranberry (Vaccinium macrocarpon Ait.) crops benefit from the presence of honey bee (Apis mellifera L.) for pollination. Unfortunately, beekeepers are observing negative impacts of pollination services on honey bee colonies. In this study, we investigated three beekeeping management strategies (MS) and measured their impact on honey bee colony health and development. Experimental groups (five colonies/MS) were: A) Control farmland honey producing MS (control MS); B) Blueberry pollination MS (blueberry MS); C) Cranberry pollination MS (cranberry MS) and D) Double pollination MS, blueberry followed by cranberry (double MS). Our goals were to 1) compare floral abundance and attractiveness of foraging areas to honey bees between apiaries using a Geographic Information System, and 2) compare honey bee colony health status and population development between MS during a complete beekeeping season. Our results show significantly lower floral abundance and honey bee attractiveness of foraging areas during cranberry pollination compared to the other environments. The blueberry pollination site seemed to significantly reduce brood population in the colonies who provided those services (blueberry MS and double MS). The cranberry pollination site seemed to significantly reduce colony weight gain (cranberry MS and double MS) and induce a significantly higher winter mortality rate (cranberry MS). We also measured significantly higher levels of Black queen cell virus and Sacbrood virus in the MS providing cranberry pollination (cranberry MS and double MS).


Asunto(s)
Abejas/fisiología , Arándanos Azules (Planta)/química , Polinización/fisiología , Vaccinium macrocarpon/química , Agricultura , Animales , Apicultura/normas , Abejas/virología , Arándanos Azules (Planta)/crecimiento & desarrollo , Dicistroviridae/patogenicidad , Flores/química , Flores/crecimiento & desarrollo , Frutas/química , Frutas/crecimiento & desarrollo , Humanos , Virus ARN/patogenicidad , Vaccinium macrocarpon/crecimiento & desarrollo
14.
J Econ Entomol ; 112(2): 534-542, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30668866

RESUMEN

The ectoparasitic mite Varroa destructor Anderson & Trueman is a major pest of the honey bee Apis mellifera L. (Hymenoptera: Apidae) and its control is one of the most important challenges that beekeepers have to face. In this study, we investigated the use of the predatory mite Stratiolaelaps scimitus (Womersley) for the biological control of varroa mites in Eastern Canada, as part of an integrated pest management strategy. Our study aimed to evaluate the effectiveness of S. scimitus in controlling varroa populations in early and late fall in comparison with untreated colonies and two currently used organic treatments: Thymovar and oxalic acid. Performing weekly mite drop monitoring, we first compared the effectiveness of two introduction rates of S. scimitus (≈6,250 or 12,500 mites/colony) during a fall treatment (September) and, as we detected no differences of effectiveness between these two treatment types, we used the dosage currently recommended by biocontrol suppliers (≈6,250 mites) in a complementary treatment test (November). Results showed that S. scimitus did not succeed in controlling varroa populations in honey bee colonies when introduced either in early or in late fall according to current suppliers' recommended rates and application method. On the other hand, our results demonstrated that Thymovar and oxalic acid remain effective options for controlling varroa mite populations during fall in Quebec, Canada.


Asunto(s)
Varroidae , Animales , Abejas , Canadá , Control de Plagas , Quebec , Estaciones del Año
15.
PLoS One ; 13(12): e0208812, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30532269

RESUMEN

The biocontrol of the honey bee ectoparasite Varroa destructor is an underexploited but promising avenue that would benefit from being integrated in a Varroa management program. Our study aimed to investigate the potential of the predatory mite Stratiolaelaps scimitus to control Varroa infestations in honey bees. Tests on safety and predation were carried out to: (1) assess the risk of predation of the honey bee brood by S. scimitus under laboratory conditions and within the colony, and (2) evaluate the predation potential of S. scimitus on phoretic Varroa mites. Under laboratory conditions, S. scimitus was able to feed upon free Varroa mites, but also attacked every unprotected honey bee brood stages with a strong preference for bee eggs. When introduced inside colonies, however, S. scimitus does not have negative effects on the survival of the bee brood. Moreover, observations made in the laboratory revealed that S. scimitus does not attack Varroa mites when they are attached to the body of bees. However, all Varroa mites that had naturally fallen from the bees were predated upon by S. scimitus and died in less than 24h. This study provides evidence that S. scimitus does not represent a significant threat to the bee brood, but also suggests that its effect in Varroa control will probably be limited as it does not attack phoretic Varroa mites. Our results represent a first step in assessing the potential of S. scimitus to control V. destructor and provide novel information about the predator's behavior inside the honey bee colony.


Asunto(s)
Abejas/parasitología , Control Biológico de Vectores , Conducta Predatoria/fisiología , Varroidae/fisiología , Animales
16.
J Econ Entomol ; 109(3): 1009-1014, 2016 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-27018435

RESUMEN

Supplemental feeding of honey bee ( Apis mellifera L., Hymenoptera: Apidae) colonies in spring is essential for colony buildup in northern apicultural regions. The impact of pollen and syrup feeding on drone production and sperm quality is not well-documented, but may improve fecundation of early-bred queens. We measured the impact of feeding sucrose syrup, and protein supplements to colonies in early spring in eastern Canada. Drones were reared under different nutritional regimes, and mature individuals were then assessed in regard to size, weight, and semen quality (semen volume, sperm count, and viability). Results showed significant increases in drone weight and abdomen size when colonies were fed sucrose and a protein supplement. Colonies receiving no additional nourishment had significantly less semen volume per drone and lower sperm viability. Our study demonstrates that feeding honey bee colonies in spring with sucrose syrup and a protein supplement is important to enhance drone reproductive quality. Résumé L'administration de suppléments alimentaires aux colonies de l'abeille domestique ( Apis mellifera L., Hymenoptera: Apidae) au printemps est essentielle pour le bon développement des colonies dans les régions apicoles nordiques. L'impact de la supplémentation des colonies en pollen et en sirop sur la production des faux-bourdons et la qualité du sperme demeure peu documenté mais pourrait résulter en une meilleure fécondation des reines produites tôt en saison. Nous avons mesuré l'impact de la supplémentation en sirop et/ou en supplément de pollen sur les colonies d'abeilles tôt au printemps dans l'est du Canada. Les faux-bourdons ont été élevé sous différents régimes alimentaires et les individus matures ont ensuite été évalués pour leur taille, leur poids ainsi que la qualité de leur sperme (volume de sperme, nombre et viabilité des spermatozoïdes. Les résultats montrent une augmentation significative du poids et de la taille de l'abdomen des faux-bourdons élevés dans les colonies recevant des suppléments de sirop et de protéine. Les faux-bourdons élevés dans les colonies ne recevant aucun supplément alimentaire possédaient les plus petits volumes de sperme ainsi que la plus faible viabilité des spermatozoïdes. Notre étude démontre que la supplémentation alimentaire des colonies en sirop et en protéines au printemps est importante pour favoriser la qualité reproductive des faux-bourdons.

17.
BMC Genomics ; 16: 500, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26149072

RESUMEN

BACKGROUND: Hygienic behavior is a complex, genetically-based quantitative trait that serves as a key defense mechanism against parasites and diseases in Apis mellifera. Yet, the genomic basis and functional pathways involved in the initiation of this behavior are still unclear. Deciphering the genomic basis of hygienic behavior is a prerequisite to developing an extensive repertoire of genetic markers associated to the performance level of this quantitative trait. To fill this knowledge gap, we performed an RNA-seq on brain samples of 25 honeybees per hives from five hygienic and three non-hygienic hives. RESULTS: This analysis revealed that a limited number of functional genes are involved in honeybee hygienic behavior. The genes identified, and especially their location in the honeybee genome, are consistent with previous findings. Indeed, the genomic sequences of most differentially expressed genes were found on the majority of the QTL regions associated to the hygienic behavior described in previous studies. According to the Gene Ontology annotation, 15 genes are linked to the GO-terms DNA or nucleotide binding, indicating a possible role of these genes in transcription regulation. Furthermore, GO-category enrichment analysis revealed that electron carrier activity is over-represented, involving only genes belonging to the cytochrome P450. Cytochrome P450 enzymes' overexpression can be explained by a disturbance in the regulation of expression induced by changes in transcription regulation or sensitivity to xenobiotics. Over-expressed cytochrome P450 enzymes could potentially degrade the odorant pheromones or chemicals that normally signal the presence of a diseased brood before activation of the removal process thereby inhibit hygienic behavior. CONCLUSIONS: These findings improve our understanding on the genetics basis of the hygienic behavior. Our results show that hygienic behavior relies on a limited set of genes linked to different regulation patterns (expression level and biological processes) associated with an over-expression of cytochrome P450 genes.


Asunto(s)
Abejas/genética , Regulación de la Expresión Génica/genética , Genoma de los Insectos/genética , Animales , Conducta Animal , Encéfalo/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Ontología de Genes , Marcadores Genéticos/genética , Anotación de Secuencia Molecular/métodos , Conducta Social , Transcripción Genética/genética
18.
Exp Appl Acarol ; 55(1): 65-76, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21442305

RESUMEN

The objective of this study was to measure the efficacy of two organic acid treatments, formic acid (FA) and oxalic acid (OA) for the spring control of Varroa destructor (Anderson and Trueman) in honey bee (Apis mellifera L.) colonies. Forty-eight varroa-infested colonies were randomly distributed amongst six experimental groups (n = 8 colonies per group): one control group (G1); two groups tested applications of different dosages of a 40 g OA/l sugar solution 1:1 trickled on bees (G2 and G3); three groups tested different applications of FA: 35 ml of 65% FA in an absorbent Dri-Loc(®) pad (G4); 35 ml of 65% FA poured directly on the hive bottom board (G5) and MiteAwayII™ (G6). The efficacy of treatments (varroa drop), colony development, honey yield and hive survival were monitored from May until September. Five honey bee queens died during this research, all of which were in the FA treated colonies (G4, G5 and G6). G6 colonies had significantly lower brood build-up during the beekeeping season. Brood populations at the end of summer were significantly higher in G2 colonies. Spring honey yield per colony was significantly lower in G6 and higher in G1. Summer honey flow was significantly lower in G6 and higher in G3 and G5. During the treatment period, there was an increase of mite drop in all the treated colonies. Varroa daily drop at the end of the beekeeping season (September) was significantly higher in G1 and significantly lower in G6. The average number of dead bees found in front of hives during treatment was significantly lower in G1, G2 and G3 versus G4, G5 and G6. Results suggest that varroa control is obtained from all spring treatment options. However, all groups treated with FA showed slower summer hive population build-up resulting in reduced honey flow and weaker hives at the end of summer. FA had an immediate toxic effect on bees that resulted in queen death in five colonies. The OA treatments that were tested have minimal toxic impacts on the honey bee colonies.


Asunto(s)
Abejas/parasitología , Formiatos , Ácido Oxálico , Control de Ácaros y Garrapatas , Varroidae , Animales , Clima , Miel/análisis , Densidad de Población
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA