Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Vis Exp ; (194)2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37154550

RESUMEN

Coronary artery bypass graft (CABG) surgery is a procedure to revascularize ischemic myocardium. Saphenous vein remains used as a CABG conduit despite the reduced long-term patency compared to arterial conduits. The abrupt increase of hemodynamic stress associated with the graft arterialization results in vascular damage, especially the endothelium, that may influence the low patency of the saphenous vein graft (SVG). Here, we describe the isolation, characterization, and expansion of human saphenous vein endothelial cells (hSVECs). Cells isolated by collagenase digestion display the typical cobblestone morphology and express endothelial cell markers CD31 and VE-cadherin. To assess the mechanical stress influence, protocols were used in this study to investigate the two main physical stimuli, shear stress and stretch, on arterialized SVGs. hSVECs are cultured in a parallel plate flow chamber to produce shear stress, showing alignment in the direction of the flow and increased expression of KLF2, KLF4, and NOS3. hSVECs can also be cultured in a silicon membrane that allows controlled cellular stretch mimicking venous (low) and arterial (high) stretch. Endothelial cells' F-actin pattern and nitric oxide (NO) secretion are modulated accordingly by the arterial stretch. In summary, we present a detailed method to isolate hSVECs to study the influence of hemodynamic mechanical stress on an endothelial phenotype.


Asunto(s)
Células Endoteliales , Vena Safena , Humanos , Vena Safena/cirugía , Estrés Mecánico , Puente de Arteria Coronaria/métodos , Endotelio Vascular/metabolismo , Grado de Desobstrucción Vascular
2.
J Cardiovasc Dev Dis ; 6(2)2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31052244

RESUMEN

The interleukin-1 family is associated with innate immunity and inflammation. The latter has been linked to the genesis of cardiovascular diseases. We, therefore, investigated whether interleukin-1 beta (IL-1ß) is activated during arterialization of vein grafts. First, we examined the activation of IL-1ß using the rat arterialized jugular vein serially sampled for up to 90 days. IL-1ß expression increased 18 times on day 1 in the arterialized rat jugular vein and remained five times above nonarterialized vein levels for up to 90 days. Similarly, IL-1ß expression increased early (1-5 days) in human vein graft autopsy samples compared with late phases (1-4 years). Activation was also detected in ex vivo arterialized human saphenous veins. Upon stratification of the results, we uncovered a T allele promoter attenuating effect in IL-1ß activation in response to hemodynamic stress. Altogether, the results show that IL-1ß is activated during arterialization of vein grafts in rats and humans, and this response is modulated by -511C/T IL-1ß gene polymorphism. It is tempting to speculate that the activation of IL-1ß, and consequently local inflammation, modulates early vascular remodeling and that the gene polymorphism may be useful in predicting outcomes or assisting in interventions.

3.
J Cardiovasc Dev Dis ; 6(1)2019 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-30717394

RESUMEN

The global expression profile of the arterialized rat jugular vein was established to identify candidate genes and cellular pathways underlying the remodeling process. The arterialized jugular vein was analyzed on days 3 and 28 post-surgery and compared with the normal jugular vein and carotid artery. A gene array platform detected 9846 genes in all samples. A heatmap analysis uncovered patterns of gene expression showing that the arterialized vein underwent a partial transition from vein to artery from day 3 to 28 post-surgery. The same pattern was verified for 1845 key differentially expressed genes by performing a pairwise comparison of the jugular vein with the other groups. Interestingly, hierarchical clustering of 60 genes with altered expression on day 3 and day 28 displayed an expression pattern similar to that of the carotid artery. Enrichment analysis results and the network relationship among genes modulated during vein arterialization showed that collagen might play a role in the early remodeling process. Indeed, the total collagen content was increased, with the augmented expression of collagen I, collagen IV, and collagen V in arterialized veins. Additionally, there was an increase in the expression of versican and Thy-1 and a decrease in the expression of biglycan and ß1-integrin. Overall, we provide evidence that vein arterialization remodeling is accompanied by consistent patterns of gene expression and that collagen may be an essential element underlying extracellular matrix changes that support the increased vascular wall stress of the new hemodynamic environment.

4.
Clin Sci (Lond) ; 132(4): 437-447, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29343616

RESUMEN

Rapamycin, the macrolide immunosuppressant and active pharmaceutic in drug-eluting stents (DES), has a well-recognized antiproliferative action that involves inhibition of the mTOR pathway after binding to the cytosolic protein FKBP12. TGF receptor-type I (TGFRI) spontaneous activation is inhibited by the association with FKBP12. We hypothesized that rapamycin, in addition to inhibition of mTOR signaling, activates TGFRI independent of TGFß. Human umbilical vein endothelial cells (HUVECs) were treated with rapamycin (10 nmol/l) and/or TGFß RI kinase inhibitor (TGFRIi, 100 nmol/l) for 24 h. Rapamycin induced SMAD phosphorylation (SMAD1, SMAD2, and SMAD5) and PAI-1 up-regulation, which was specifically abrogated by SMAD2 knockdown. TGFRIi efficiently blocked phosphorylation of SMAD2, but not SMAD1/5. Interestingly, the inhibitor did not alter cell proliferation arrest induced by rapamycin. Active TGFß secretion was not affected by the treatment. Neutralizing TGFß experiments did not influence SMAD2 phosphorylation or PAI-1 expression indicating that activation of this pathway is independent of the ligand. In addition, rapamycin induction of endothelial-to-mesenchymal transition (EndMT) was potentiated by IL-1ß and efficiently blocked by TGFRIi. In vivo, the prothrombogenic effects of rapamycin and up-regulation of PAI-1 in murine carotid arteries were reduced by TGFRIi treatment. In conclusion, we provide evidence that rapamycin activates TGF receptor independent of its ligand TGFß, in concert with promotion of PAI-1 expression and changes in endothelial phenotype. These undesirable effects, the prothrombogenic state, and activation of EndMT are SMAD2-dependent and independent of the therapeutic rapamycin-induced cell proliferation arrest.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Receptores de Factores de Crecimiento Transformadores beta/efectos de los fármacos , Sirolimus/farmacología , Proteína Smad2/efectos de los fármacos , Proteínas Portadoras/efectos de los fármacos , Humanos , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/efectos de los fármacos , Factor de Crecimiento Transformador beta/efectos de los fármacos
5.
Biomed Eng Online ; 13: 54, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24885410

RESUMEN

BACKGROUND: We and others have previously demonstrated that adipose-derived stem cells (ASCs) transplantation improve cardiac dysfunction post-myocardium infarction (MI) under hemodynamic stress in rats. The beneficial effects appear to be associated with pleiotropic factors due to a complex interplay between the transplanted ASCs and the microenvironment in the absence of cell transdifferentiation. In the present work, we tested the hypothesis that mechanical stretch per se could change human ASCs (hASCs) into cardiovascular cell phenotypes that might influence post-MI outcomes. METHODS: Human ASCs were obtained from patients undergoing liposuction procedures. These cells were stretched 12%, 1Hz up to 96 hours by using Flexercell 4000 system. Protein and gene expression were evaluated to identify cardiovascular cell markers. Culture medium was analyzed to determine cell releasing factors, and contraction potential was also evaluated. RESULTS: Mechanical stretch, which is associated with extracellular signal-regulated kinase (ERK) phosphorylation, failed to induce the expression of cardiovascular cell markers in human ASCs, and mesenchymal cell surface markers (CD29; CD90) remained unchanged. hASCs and smooth muscle cells (SMCs) displayed comparable contraction ability. In addition, these cells demonstrated a profound ability to secrete an array of cytokines. These two properties of human ASCs were not influenced by mechanical stretch. CONCLUSIONS: Altogether, our findings demonstrate that hASCs secrete an array of cytokines and display contraction ability even in the absence of induction of cardiovascular cell markers or the loss of mesenchymal surface markers when exposed to mechanical stretch. These properties may contribute to beneficial post-MI cardiovascular outcomes and deserve to be further explored under the controlled influence of other microenvironment components associated with myocardial infarction, such as tissue hypoxia.


Asunto(s)
Tejido Adiposo/citología , Sistema Cardiovascular/citología , Diferenciación Celular , Fenómenos Mecánicos , Fenotipo , Células Madre/citología , Biomarcadores/metabolismo , Regulación de la Expresión Génica , Humanos , Interleucina-10/metabolismo , Interleucina-8/metabolismo , Infarto del Miocardio/cirugía , Trasplante de Células Madre , Células Madre/metabolismo , Factores de Tiempo , Resultado del Tratamiento , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA