Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Rep ; 8(1): 9792, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29955158

RESUMEN

Microtubule plus end-binding protein, EB1 is a key regulator of microtubule dynamics. Auto-inhibitory interaction in EB1 has previously been shown to inhibit its ability to bind to microtubules and regulate microtubule dynamics. However, the factors that promote its microtubule regulatory activity by over-coming the auto-inhibition are less known. Here, we show that GTP plays a critical role in promoting the microtubule-targeting activity of EB1 by suppressing its auto-inhibition. Our biophysical data demonstrate that GTP binds to EB1 at a distinct site in its conserved N-terminal domain. Detailed analyses reveal that GTP-binding suppresses the intra-molecular inhibitory interaction between the globular N-terminus and the C-terminal coiled-coil domain. We further show that mutation of the GTP-binding site residues in N-terminus weakens the affinity for GTP, but also for the C-terminus, indicating overlapping binding sites. Confocal imaging and biochemical analysis reveal that EB1 localization on the microtubules is significantly increased upon mutations of the GTP-binding site residues. The results demonstrate a unique role of GTP in facilitating EB1 interaction with the microtubules by relieving its intra-molecular inhibition. They also implicate that GTP-binding may regulate the functions of EB1 on the cellular microtubules.


Asunto(s)
Guanosina Trifosfato/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Sitios de Unión , Humanos , Proteínas Asociadas a Microtúbulos/química , Mutación/genética , Dominios Proteicos
2.
Nat Commun ; 7: 11665, 2016 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-27225956

RESUMEN

Kinetochore couples chromosome movement to dynamic microtubules, a process that is fundamental to mitosis in all eukaryotes but poorly understood. In vertebrates, spindle-kinetochore-associated (Ska1-3) protein complex plays an important role in this process. However, the proteins that stabilize Ska-mediated kinetochore-microtubule attachment remain unknown. Here we show that microtubule plus-end tracking protein EB1 facilitates Ska localization on microtubules in vertebrate cells. EB1 depletion results in a significant reduction of Ska1 recruitment onto microtubules and defects in mitotic chromosome alignment, which is also reflected in computational modelling. Biochemical experiments reveal that EB1 interacts with Ska1, facilitates Ska1-microtubule attachment and together stabilizes microtubules. Structural studies reveal that EB1 either with Ska1 or Ska complex forms extended structures on microtubule lattice. Results indicate that EB1 promotes Ska association with K-fibres and facilitates kinetochore-microtubule attachment. They also implicate that in vertebrates, chromosome coupling to dynamic microtubules could be mediated through EB1-Ska extended structures.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Secuencia de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica/genética , Células HeLa , Humanos , Microscopía de Fuerza Atómica , Microscopía Confocal , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/ultraestructura , Mitosis/genética , Interferencia de ARN , Homología de Secuencia de Aminoácido
3.
Biochemistry ; 54(41): 6413-22, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26422590

RESUMEN

Centrioles are essential components of the animal centrosome and play crucial roles in the formation of cilia and flagella. They are cylindrical structures composed of nine triplet microtubules organized around a central cartwheel. Recent studies have identified spindle assembly abnormal protein SAS-6 as a critical component necessary for formation of the cartwheel. However, the molecular details of how the cartwheel participates in centriolar microtubule assembly have not been clearly understood. In this report, we show that the C-terminal tail (residues 470-657) of human SAS-6, HsSAS-6 C, the region that has been shown to extend toward the centriolar wall where the microtubule triplets are organized, nucleated and induced microtubule polymerization in vitro. The N-terminus (residues 1-166) of HsSAS-6, the domain known to be involved in formation of the central hub of the cartwheel, did not, however, exert any effect on microtubule polymerization. HsSAS-6 C bound to the microtubules and localized along the lengths of the microtubules in vitro. Microtubule pull-down and coimmunoprecipitation (Co-IP) experiments with S-phase synchronized HeLa cell lysates showed that the endogenous HsSAS-6 coprecipitated with the microtubules, and it mediated interaction with tubulin. Isothermal calorimetry titration and size exclusion chromatography showed that HsSAS-6 C bound to the αß-tubulin dimer in vitro. The results demonstrate that HsSAS-6 possesses an intrinsic microtubule assembly promoting activity and further implicate that its outer exposed C-terminal tail may play critical roles in microtubule assembly and stabilizing microtubule attachment with the centriolar cartwheel.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas de Ciclo Celular/análisis , Células HeLa , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Tubulina (Proteína)/análisis
4.
Int J Oncol ; 46(1): 133-46, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25310526

RESUMEN

Microtubule plus­end­binding protein (+TIP) EB1 has been shown to be upregulated in breast cancer cells and promote breast tumor growth in vivo. However, its effect on the cellular actions of microtubule­targeted drugs in breast cancer cells has remained poorly understood. By using cellular and biochemical assays, we demonstrate that EB1 plays a critical role in regulating the sensitivity of breast cancer cells to anti­microtubule drug, paclitaxel (PTX). Cell viability assays revealed that EB1 expression in the breast cancer cell lines correlated with the reduction of their sensitivity to PTX. Knockdown of EB1 by enzymatically­prepared siRNA pools (esiRNAs) increased PTX­induced cytotoxicity and sensitized cells to PTX­induced apoptosis in three breast cancer cell lines, MCF­7, MDA MB­231 and T47D. Apoptosis was associated with activation of caspase­9 and an increase in the cleavage of poly(ADP­ribose) polymerase (PARP). p53 and Bax were upregulated and Bcl2 was downregulated in the EB1­depleted PTX­treated MCF­7 cells, indicating that the apoptosis occurs via a p53­dependent pathway. Following its upregulation, the nuclear accumulation of p53 and its association with cellular microtubules were increased. EB1 depletion increased PTX­induced microtubule bundling in the interphase cells and induced formation of multiple spindle foci with abnormally elongated spindles in the mitotic MCF­7 cells, indicating that loss of EB1 promotes PTX­induced stabilization of microtubules. EB1 inhibited PTX­induced microtubule polymerization and diminished PTX binding to microtubules in vitro, suggesting that it modulates the binding sites of PTX at the growing microtubule ends. Results demonstrate that EB1 downregulates inhibition of PTX­induced proliferation and apoptosis in breast cancer cells through a mechanism in which it impairs PTX­mediated stabilization of microtubule polymerization and inhibits PTX binding on microtubules.


Asunto(s)
Apoptosis , Neoplasias de la Mama/patología , Proliferación Celular , Proteínas Asociadas a Microtúbulos/fisiología , Microtúbulos , Paclitaxel/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Neoplasias de la Mama/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Regulación hacia Abajo , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Células MCF-7 , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Paclitaxel/metabolismo , ARN Interferente Pequeño/farmacología
5.
Biochemistry ; 53(34): 5551-7, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25111064

RESUMEN

The +TIP protein EB1 autonomously tracks the growing plus end of microtubules and regulates plus-end dynamics. Previous studies have indicated that EB1 can recognize GTP-bound tubulin structures at the plus end, and it localizes on the microtubule surface at a site close to the exchangeable GTP-binding site of tubulin. Although the GTP-dependent structural change in tubulin has been demonstrated to be a critical determinant for recognition of plus ends by EB1, the effect of GTP on the structure of EB1 has remained unclear. Here, we have used spectroscopic, calorimetric, and biochemical methods to analyze the effect of GTP on EB1 in vitro. Isothermal titration calorimetry and tryptophan fluorescence quenching experiments demonstrated that EB1 binds to GTP with a dissociation constant ~30 µM. Circular dichroism measurements showed that EB1 undergoes changes in its secondary structure on binding GTP. Size-exclusion chromatography and urea-induced unfolding analyses revealed that GTP binding induces dissociation of the EB1 dimer to monomers. Size-exclusion chromatography followed by biochemical analysis further determined that EB1-GTP binding involves association of approximately one molecule of GTP per EB1 monomer. The results reveal a hitherto unknown GTP-dependent mechanism of dimer-to-monomer transition in EB1 and further implicate its possible role in regulating the stability of the EB1 dimer vs monomer as well as plus-end regulation in cells.


Asunto(s)
Guanosina Trifosfato/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Calorimetría , Cromatografía en Gel , Dicroismo Circular , Dimerización , Unión Proteica
6.
Biochem Pharmacol ; 84(5): 633-45, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22705644

RESUMEN

A plant dictamine analog, 1-[4-(furo[2,3-b]quinolin-4-ylamino)phenyl]ethanone (CIL-102) has been shown to exert potent anti-tumor activity. In this study, we examined the mode of interaction of CIL-102 with tubulin and unraveled the cellular mechanism responsible for its anti-tumor activity. CIL-102 bound to tubulin at a single site with a dissociation constant ~0.4 µM. Isothermal titration calorimetry revealed that CIL-102-tubulin interaction is highly enthalpy driven and that the binding affords a large negative heat capacity change (ΔC(p) = -790 cal mol(-1) K(-1)) with an enthalpy-entropy compensation. An analysis of the modified Dixon plot suggested that CIL-102 competitively inhibited the binding of podophyllotoxin, a colchicine-binding site agent, to tubulin. Computational modeling indicated that CIL-102 binds exclusively at the ß-subunit of tubulin and that CIL-102 and colchicine partially share their binding sites on tubulin. It bound to tubulin reversibly and the binding was estimated to be ~1000 times faster than that of colchicine. CIL-102 potently inhibited the proliferation of MCF-7 cells, induced monopolar spindle formation and multi-nucleation. At half-maximal inhibitory concentration, the spindle microtubules were visibly depolymerized and disorganized. CIL-102 reduced the inter-polar distances of bipolar mitotic cells indicating that it impaired microtubule-kinetochore attachments. CIL-102-treatment induced apoptosis in MCF-7 cells in association with increased nuclear accumulation of p53 and p21 suggesting that apoptosis is triggered through a p53-p21 dependent pathway. The results indicated that CIL-102 exerted anti-proliferative activity by disrupting microtubule functions through tubulin binding and provided important insights into the differential mode of tubulin binding by CIL-102 and colchicine.


Asunto(s)
Apoptosis , Neoplasias de la Mama/patología , Sales de Tetrazolio/metabolismo , Tiazoles/metabolismo , Tubulina (Proteína)/metabolismo , Sitios de Unión , Neoplasias de la Mama/metabolismo , Calorimetría , Línea Celular Tumoral , Proliferación Celular , Humanos , Cinética , Espectrometría de Fluorescencia , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA