Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
NPJ Syst Biol Appl ; 10(1): 29, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491038

RESUMEN

Understanding the biological functions of proteins is of fundamental importance in modern biology. To represent a function of proteins, Gene Ontology (GO), a controlled vocabulary, is frequently used, because it is easy to handle by computer programs avoiding open-ended text interpretation. Particularly, the majority of current protein function prediction methods rely on GO terms. However, the extensive list of GO terms that describe a protein function can pose challenges for biologists when it comes to interpretation. In response to this issue, we developed GO2Sum (Gene Ontology terms Summarizer), a model that takes a set of GO terms as input and generates a human-readable summary using the T5 large language model. GO2Sum was developed by fine-tuning T5 on GO term assignments and free-text function descriptions for UniProt entries, enabling it to recreate function descriptions by concatenating GO term descriptions. Our results demonstrated that GO2Sum significantly outperforms the original T5 model that was trained on the entire web corpus in generating Function, Subunit Structure, and Pathway paragraphs for UniProt entries.


Asunto(s)
Proteínas , Programas Informáticos , Humanos , Ontología de Genes , Proteínas/genética
2.
Sci Data ; 11(1): 176, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326333

RESUMEN

Suncus etruscus is one of the world's smallest mammals, with an average body mass of about 2 grams. The Etruscan shrew's small body is accompanied by a very high energy demand and numerous metabolic adaptations. Here we report a chromosome-level genome assembly using PacBio long read sequencing, 10X Genomics linked short reads, optical mapping, and Hi-C linked reads. The assembly is partially phased, with the 2.472 Gbp primary pseudohaplotype and 1.515 Gbp alternate. We manually curated the primary assembly and identified 22 chromosomes, including X and Y sex chromosomes. The NCBI genome annotation pipeline identified 39,091 genes, 19,819 of them protein-coding. We also identified segmental duplications, inferred GO term annotations, and computed orthologs of human and mouse genes. This reference-quality genome will be an important resource for research on mammalian development, metabolism, and body size control.


Asunto(s)
Cromosomas , Musarañas , Animales , Ratones , Cromosomas/genética , Genoma , Genómica , Anotación de Secuencia Molecular , Musarañas/genética
3.
bioRxiv ; 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38014080

RESUMEN

Understanding the biological functions of proteins is of fundamental importance in modern biology. To represent function of proteins, Gene Ontology (GO), a controlled vocabulary, is frequently used, because it is easy to handle by computer programs avoiding open-ended text interpretation. Particularly, the majority of current protein function prediction methods rely on GO terms. However, the extensive list of GO terms that describe a protein function can pose challenges for biologists when it comes to interpretation. In response to this issue, we developed GO2Sum (Gene Ontology terms Summarizer), a model that takes a set of GO terms as input and generates a human-readable summary using the T5 large language model. GO2Sum was developed by fine-tuning T5 on GO term assignments and free-text function descriptions for UniProt entries, enabling it to recreate function descriptions by concatenating GO term descriptions. Our results demonstrated that GO2Sum significantly outperforms the original T5 model that was trained on the entire web corpus in generating Function, Subunit Structure, and Pathway paragraphs for UniProt entries.

4.
IEEE J Biomed Health Inform ; 25(5): 1832-1838, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32897865

RESUMEN

Protein is an essential macro-nutrient for perceiving a wide range of biochemical activities and biological regulations in living cells. In this work, we have presented a novel multi-modal approach, named MultiPredGO, for predicting protein functions by utilizing two different kinds of information, namely protein sequence and the protein secondary structure. Here, our contributions are threefold; firstly, along with the protein sequence, we learn the feature representation from the protein structure. Secondly, we develop two different deep learning models after considering the characteristics of the underlying data patterns of the protein sequence and protein 3D structures. Finally, along with these two modalities, we have also utilized protein interaction information for expediting the efficiency of the proposed model in predicting the protein functions. For extracting features from different modalities, we have utilized various variations of the convolutional neural network. As the protein function classes are dependent on each other, we have used a neuro-symbolic hierarchical classification model, which resembles the structure of Gene Ontology (GO), for effectively predicting the dependent protein functions. Finally, to validate the goodness of our proposed method (MultiPredGO), we have compared our results with various uni-modal along with two well-known multi-modal protein function prediction approaches, namely, INGA and DeepGO. Results show that the overall performance of the proposed approach in terms of accuracy, F-measure, precision, and recall metrics are better than those by the state-of-the-art methods. MultiPredGO attains an average 13.05% and 30.87% improvements over the best existing comparing approach (DeepGO) for cellular component and molecular functions, respectively.


Asunto(s)
Redes Neurales de la Computación , Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA