Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Hypertens Res ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39363004

RESUMEN

In recent years, the knowledge of the physiological and pathophysiological roles of the renin-angiotensin system (RAS) in glucose metabolism has advanced significantly. It is now well-established that blockade of the angiotensin AT1 receptor (AT1R) improves insulin sensitivity. Activation of the AT2 receptor (AT2R) and the MAS receptor are significant contributors to this beneficial effect. Elevated availability of angiotensin (Ang) II) for interaction with the AT2R and increased Ang-(1-7) formation during AT1R blockade mediate these effects. The ongoing development of selective AT2R agonists, such as compound 21 and the novel Ang III peptidomimetics, has significantly advanced the exploration of the role of AT2R in metabolism and its potential as a therapeutic target. These agents show promise, particularly when RAS inhibition is contraindicated. Additionally, other RAS peptides, including Ang IV, des-Asp-Ang I, Ang-(1-9), and alamandine, hold therapeutic capability for addressing metabolic disturbances linked to type 2 diabetes. The possibility of AT2R heteromerization with either AT1R or MAS receptor offers an exciting area for future research, particularly concerning therapeutic strategies to improve glycemic control. This review focuses on therapeutic opportunities to improve insulin sensitivity, taking advantage of the protective arm of the RAS.

2.
Biochem Pharmacol ; 229: 116480, 2024 11.
Artículo en Inglés | MEDLINE | ID: mdl-39128587

RESUMEN

Alamandine (ALA) exerts protective effects similar to angiotensin (Ang) (1-7) through Mas-related G protein-coupled receptor type D receptor (MrgDR) activation, distinct from Mas receptor (MasR). ALA induces anti-inflammatory effects in mice but its impact in human macrophages remains unclear. We aimed to investigate the anti-inflammatory effects of ALA in human macrophages. Interleukin (IL)-6 and IL-1ß were measured by ELISA in human THP-1 macrophages and human monocyte-derived macrophages exposed to lipopolysaccharide (LPS). Consequences of MasR-MrgDR heteromerization were investigated in transfected HEK293T cells. ALA decreased IL-6 and IL-1ß secretion in LPS-activated THP-1 macrophages. The ALA-induced decrease in IL-6 but not in IL-1ß was prevented by MasR blockade and MasR downregulation, suggesting MasR-MrgDR interaction. In human monocyte-derived M1 macrophages, ALA decreased IL-1ß secretion independently of MasR. MasR-MrgDR interaction was confirmed in THP-1 macrophages, human monocyte-derived macrophages, and transfected HEK293T cells. MasR and MrgDR formed a constitutive heteromer that was not influenced by ALA. ALA promoted Akt and ERK1/2 activation only in cells expressing MasR-MrgDR heteromers, and this effect was prevented by MasR blockade. While Ang-(1-7) reduced cellular proliferation in MasR -but not MrgDR- expressing cells, ALA antiproliferative effect was elicited in cells expressing MasR-MrgDR heteromers. ALA also induced an antiproliferative response in THP-1 cells and this effect was abolished by MasR blockade, reinforcing MasR-MrgDR interaction. MasR-MrgDR heteromerization is crucial for ALA-induced anti-inflammatory and antiproliferative responses in human macrophages. This study broaden our knowledge of the protective axis of the RAS, thus enabling novel therapeutic approaches in inflammatory-associated diseases.


Asunto(s)
Proliferación Celular , Interleucina-6 , Macrófagos , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas , Receptores Acoplados a Proteínas G , Sistema Renina-Angiotensina , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Proliferación Celular/efectos de los fármacos , Células HEK293 , Receptores Acoplados a Proteínas G/metabolismo , Interleucina-6/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Sistema Renina-Angiotensina/efectos de los fármacos , Sistema Renina-Angiotensina/fisiología , Células THP-1 , Multimerización de Proteína/efectos de los fármacos , Oligopéptidos
3.
J Hypertens ; 42(6): 1101-1104, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690908

RESUMEN

Isolated nocturnal hypertension (INHT), defined as nighttime elevated blood pressure (BP) with normal daytime BP assessed by ambulatory BP monitoring, is associated with higher cardiovascular morbidity and mortality. We hypothesized that an alteration in the circulating renin-angiotensin system (RAS) contributes to INHT development. We examined circulating levels of angiotensin (Ang) (1-7) and Ang II and ACE2 activity in 26 patients that met the INHT criteria, out of 50 that were referred for BP evaluation (62% women, 45 ±â€Š16 years old). Those with INHT were older, had a higher BMI, lower circulating Ang-(1-7) (P = 0.002) and Ang II levels (P = 0.02) and no change in ACE2 activity compared to those normotensives. Nighttime DBP was significantly correlated with Ang-(1-7) and Ang II levels. Logistic regression showed significant association in Ang-(1-7) and Ang II levels with INHT. Our study reveals differences in circulating RAS in individuals with INHT.


Asunto(s)
Angiotensina II , Angiotensina I , Hipertensión , Fragmentos de Péptidos , Humanos , Angiotensina I/sangre , Femenino , Masculino , Persona de Mediana Edad , Fragmentos de Péptidos/sangre , Hipertensión/sangre , Hipertensión/fisiopatología , Adulto , Angiotensina II/sangre , Sistema Renina-Angiotensina/fisiología , Ritmo Circadiano , Presión Sanguínea , Enzima Convertidora de Angiotensina 2/sangre , Monitoreo Ambulatorio de la Presión Arterial , Peptidil-Dipeptidasa A/sangre
4.
Mol Cell Biochem ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630362

RESUMEN

Central TRH, a neuropeptide, is involved in cardiovascular regulation. We demonstrated that the overexpression of diencephalic TRH (dTRH) in SHR rats can be prevented by antisense treatment, normalizing blood pressure (BP). Valproate (VPA) is an inhibitor of histone deacetylases (HDAC) which modulates gene expression through epigenetic modifications such as DNA methylation. AIMS: Study the role of HDAC inhibition in the regulation of dTRH gene expression and its effect on the pathogenesis of hypertension. MAIN METHODS: We treated 7-weeks-old male and female SHR and WKY rats with VPA for 10 weeks and evaluated BP, dTRH mRNA and methylation gene status. KEY FINDINGS: VPA attenuated the elevated BP and dTRH mRNA expression characteristic of SHR. Indeed, we found a significant 62% reduction in dTRH mRNA expression in the SHR + VPA group compared to control SHR. The decrease TRH mRNA expression induced by VPA was confirmed "in vitro" in a primary neuron culture using trichostatin A. With methylation specific PCR we demonstrated a significant increase in TRH promoter DNA methylation level in SHR + VPA group compared to control SHR. After 2 weeks of treatment interruption, rats were mated. Although they did not receive any treatment, the offspring born from VPA-treated SHR parents showed similar changes in BP, dTRH expression and methylation status, implying a transgenerational inheritance. Our findings suggest that dTRH modulation by epigenetics mechanism affects BP and could be inherited by the next generation in SHR rats.

5.
Acta Physiol (Oxf) ; 240(5): e14134, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38488216

RESUMEN

The renin-angiotensin system (RAS) plays a key role in blood pressure regulation. The RAS is a complex interconnected system composed of two axes with opposite effects. The pressor arm, represented by angiotensin (Ang) II and the AT1 receptor (AT1R), mediates the vasoconstrictor, proliferative, hypertensive, oxidative, and pro-inflammatory effects of the RAS, while the depressor/protective arm, represented by Ang-(1-7), its Mas receptor (MasR) and the AT2 receptor (AT2R), opposes the actions elicited by the pressor arm. The AT1R, AT2R, and MasR belong to the G-protein-coupled receptor (GPCR) family. GPCRs operate not only as monomers, but they can also function in dimeric (homo and hetero) or higher-order oligomeric states. Due to the interaction with other receptors, GPCR properties may change: receptor affinity, trafficking, signaling, and its biological function may be altered. Thus, heteromerization provides a newly recognized means of modulation of receptor function, as well as crosstalk between GPCRs. This review is focused on angiotensin receptors, and how their properties are influenced by crosstalk with other receptors, adding more complexity to an already complex system and potentially opening up new therapeutic approaches.


Asunto(s)
Receptores Acoplados a Proteínas G , Sistema Renina-Angiotensina , Humanos , Sistema Renina-Angiotensina/fisiología , Animales , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Receptor Cross-Talk/fisiología , Receptores de Angiotensina/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Presión Sanguínea/fisiología , Receptor de Angiotensina Tipo 2/metabolismo
6.
Prog Mol Biol Transl Sci ; 194: 49-65, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36631200

RESUMEN

The renin angiotensin system (RAS) plays a major role in blood pressure regulation and electrolyte homeostasis and is mainly composed by two axes mediating opposite effects. The pressor axis, constituted by angiotensin (Ang) II and the Ang II type 1 receptor (AT1R), exerts vasoconstrictor, proliferative, hypertensive, oxidative and pro-inflammatory actions, while the depressor/protective axis, represented by Ang-(1-7), its Mas receptor (MasR) and the Ang II type 2 receptor (AT2R), opposes the actions elicited by the pressor arm. The MasR belongs to the G protein-coupled receptor (GPCR) family. To avoid receptor overstimulation, GPCRs undergo internalization and trafficking into the cell after being stimulated. Then, the receptor may induce other signaling cascades or it may even interact with other receptors, generating distinct biological responses. Thus, control of a GPCR regarding space and time affects the specificity of the signals transduced by the receptor and the ultimate cellular response. The present chapter is focused on the signaling and trafficking pathways of MasR under physiological conditions and its participation in the pathogenesis of numerous brain diseases.


Asunto(s)
Endocitosis , Proto-Oncogenes Mas , Sistema Renina-Angiotensina , Humanos , Angiotensina II/metabolismo , Angiotensina II/farmacología , Presión Sanguínea/fisiología , Proto-Oncogenes Mas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina/fisiología
7.
Pediatr Res ; 93(4): 948-952, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35739259

RESUMEN

BACKGROUND: Angiotensin-converting enzyme 2 (ACE2) is the receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which causes COVID-19. Viral entry requires ACE2 and transmembrane protease serine 2 (TMPRSS2). Transcriptomic studies showed that children display lower ACE2 than adults, though gene expression levels do not always correlate with protein levels. We investigated the effect of age on ACE2 and TMPRSS2 protein expression in alveolar type II (AT2) cells in the lungs of children compared to adults. We also analysed the ratio of Ang-(1-7) to Ang II as a surrogate marker of ACE2 activity in the subjects' lung parenchyma. METHODS: Ang II and Ang-(1-7) levels and ACE2 and TMPRSS2 protein expression were measured by radioimmunoassay and immunohistochemistry, respectively. RESULTS: The amount of ACE2-expressing AT2 cells and ACE2 protein content were lower in children than in adults. Ang II levels were higher in children compared to adults and inversely correlated with the amount of ACE2-expressing AT2 cells. Children presented lower Ang-(1-7)/Ang II ratio than adult suggesting lower ACE2 activity in children. TMPRSS2 protein expression was not influenced by age. CONCLUSIONS: These results expand on previous transcriptomic studies and may partially explain the low susceptibility of children to SARS-CoV-2 infection. CATEGORY OF STUDY: Clinical original research IMPACT: Children display lower ACE2 protein content and activity compared to adults. Ang II levels were higher in children compared to adults and inversely correlated with the amount of ACE2-expressing AT2 cells TMPRSS2 protein expression was not influenced by age. These results expand on previous transcriptomic studies and may partially explain the low susceptibility of children to SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Adulto , Niño , Humanos , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Pulmón , Procesamiento Proteico-Postraduccional
8.
Cell Mol Neurobiol ; 43(5): 2203-2217, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36227397

RESUMEN

Shiga toxin 2 (Stx2) from enterohemorrhagic Escherichia coli (EHEC) produces hemorrhagic colitis, hemolytic uremic syndrome (HUS), and acute encephalopathy. The mortality rate in HUS increases significantly when the central nervous system (CNS) is involved. Besides, EHEC also releases lipopolysaccharide (LPS). Many reports have described cognitive dysfunctions in HUS patients, the hippocampus being one of the brain areas targeted by EHEC infection. In this context, a translational murine model of encephalopathy was employed to establish the deleterious effects of Stx2 and the contribution of LPS in the hippocampus. The purpose of this work is to elucidate the signaling pathways that may activate the inflammatory processes triggered by Stx2, which produces cognitive alterations at the level of the hippocampus. Results demonstrate that Stx2 produced depression-like behavior, pro-inflammatory cytokine release, and NF-kB activation independent of the ERK1/2 signaling pathway, while co-administration of Stx2 and LPS reduced memory index. On the other hand, LPS activated NF-kB dependent on ERK1/2 signaling pathway. Cotreatment of Stx2 with LPS aggravated the pathologic state, while dexamethasone treatment succeeded in preventing behavioral alterations. Our present work suggests that the use of drugs such as corticosteroids or NF-kB signaling inhibitors may serve as neuroprotectors from EHEC infection.


Asunto(s)
Encefalopatías , Disfunción Cognitiva , Escherichia coli Enterohemorrágica , Infecciones por Escherichia coli , Síndrome Hemolítico-Urémico , Ratones , Humanos , Animales , Toxina Shiga II/toxicidad , Lipopolisacáridos/farmacología , Sistema de Señalización de MAP Quinasas , FN-kappa B , Encéfalo/patología , Infecciones por Escherichia coli/complicaciones , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/patología , Hipocampo/patología , Cognición
9.
Biomed Pharmacother ; 152: 113201, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35661534

RESUMEN

BACKGROUND: Besides its counterbalancing role of the renin-angiotensin system (RAS), angiotensin-converting enzyme (ACE) 2 is the receptor for the type 2 coronavirus that causes severe acute respiratory syndrome, the etiological agent of COVID-19. COVID-19 is associated with increased plasmatic ACE2 levels, although conflicting results have been reported regarding angiotensin (Ang) II and Ang-(1-7) levels. We investigated plasmatic ACE2 protein levels and enzymatic activity and Ang II and Ang-(1-7) levels in normotensive and hypertensive patients hospitalized with COVID-19 compared to healthy subjects. METHODS: Ang II and Ang-(1-7), and ACE2 activity and protein levels were measured in 93 adults (58 % (n = 54) normotensive and 42 % (n = 39) hypertensive) hospitalized with COVID-19. Healthy, normotensive (n = 33) and hypertensive (n = 7) outpatient adults comprised the control group. RESULTS: COVID-19 patients displayed higher ACE2 enzymatic activity and protein levels than healthy subjects. Within the COVID-19 group, ACE2 activity and protein levels were not different between normotensive and hypertensive-treated patients, not even between COVID-19 hypertensive patients under RAS blockade treatment and those treated with other antihypertensive medications. Ang II and Ang-(1-7) levels significantly decreased in COVID-19 patients. When COVID-19 patients under RAS blockade treatment were excluded from the analysis, ACE2 activity and protein levels remained higher and Ang II and Ang-(1-7) levels lower in COVID-19 patients compared to healthy people. CONCLUSIONS: Our results support the involvement of RAS in COVID-19, even when patients under RAS blockade treatment were excluded. The increased circulating ACE2 suggest higher ACE2 expression and shedding.


Asunto(s)
COVID-19 , Hipertensión , Adulto , Angiotensina II/metabolismo , Enzima Convertidora de Angiotensina 2 , Humanos , Peptidil-Dipeptidasa A/metabolismo , Sistema Renina-Angiotensina
10.
Life Sci ; 293: 120324, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35032553

RESUMEN

AIMS: Angiotensin-converting enzyme (ACE) 2 is the receptor for severe acute respiratory syndrome coronavirus 2 which causes coronavirus disease 2019 (COVID-19). Viral cellular entry requires ACE2 and transmembrane protease serine 2 (TMPRSS2). ACE inhibitors (ACEIs) or angiotensin (Ang) receptor blockers (ARBs) influence ACE2 in animals, though evidence in human lungs is lacking. We investigated ACE2 and TMPRSS2 in type II pneumocytes, the key cells that maintain lung homeostasis, in lung parenchymal of ACEI/ARB-treated subjects compared to untreated control subjects. MAIN METHODS: Ang II and Ang-(1-7) levels and ACE2 and TMPRSS2 protein expression were measured by radioimmunoassay and immunohistochemistry, respectively. KEY FINDINGS: We found that the ratio Ang-(1-7)/Ang II, a surrogate marker of ACE2 activity, as well as the amount of ACE2-expressing type II pneumocytes were not different between ACEI/ARB-treated and untreated subjects. ACE2 protein content correlated positively with smoking habit and age. The percentage of TMPRSS2-expressing type II pneumocytes was higher in males than females and in subjects under 60 years of age but it was not different between ACEI/ARB-treated and untreated subjects. However, there was a positive association of TMPRSS2 protein content with age and smoking in ACEI/ARB-treated subjects, with high TMPRSS2 protein levels most evident in ACEI/ARB-treated older adults and smokers. SIGNIFICANCE: ACEI/ARB treatment influences human lung TMPRSS2 but not ACE2 protein content and this effect is dependent on age and smoking habit. This finding may help explain the increased susceptibility to COVID-19 seen in smokers and older patients with treated cardiovascular-related pathologies.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Antagonistas de Receptores de Angiotensina/farmacología , Enzima Convertidora de Angiotensina 2/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Sistema Renina-Angiotensina/fisiología , Serina Endopeptidasas/metabolismo , Adulto , Factores de Edad , Anciano , Células Epiteliales Alveolares/química , Células Epiteliales Alveolares/efectos de los fármacos , Angiotensina I/metabolismo , Angiotensina II/metabolismo , Enzima Convertidora de Angiotensina 2/análisis , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Femenino , Humanos , Pulmón/química , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Persona de Mediana Edad , Fragmentos de Péptidos/metabolismo , Sistema Renina-Angiotensina/efectos de los fármacos , Estudios Retrospectivos , Serina Endopeptidasas/análisis , Fumar/metabolismo , Fumar/patología
12.
Front Pharmacol ; 11: 1179, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32848782

RESUMEN

G-protein-coupled receptors (GPCRs) are targets for around one third of currently approved and clinical prescribed drugs and represent the largest and most structurally diverse family of transmembrane signaling proteins, with almost 1000 members identified in the human genome. Upon agonist stimulation, GPCRs are internalized and trafficked inside the cell: they may be targeted to different organelles, recycled back to the plasma membrane or be degraded. Once inside the cell, the receptors may initiate other signaling pathways leading to different biological responses. GPCRs' biological function may also be influenced by interaction with other receptors. Thus, the ultimate cellular response may depend not only on the activation of the receptor from the cell membrane, but also from receptor trafficking and/or the interaction with other receptors. This review is focused on angiotensin receptors and how their biological function is influenced by trafficking and interaction with others receptors.

13.
Cardiovasc Res ; 116(12): 1995-2008, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31825460

RESUMEN

AIMS: Activation of the angiotensin (Ang)-(1-7)/Mas receptor (R) axis protects from sympathetic overactivity. Endocytic trafficking is an essential process that regulates receptor (R) function and its ultimate cellular responses. We investigated whether the blunted responses to Ang-(1-7) in hypertensive rats are associated to an alteration in MasR trafficking. METHODS AND RESULTS: Brainstem neurons from Wistar-Kyoto (WKY) or spontaneously hypertensive rats (SHRs) were investigated for (i) Ang-(1-7) levels and binding and MasR expression, (ii) Ang-(1-7) responses (arachidonic acid and nitric oxide release and Akt and ERK1/2 phosphorylation), and (iii) MasR trafficking. Ang-(1-7) was determined by radioimmunoassay. MasR expression and functionality were evaluated by western blot and binding assays. MasR trafficking was evaluated by immunofluorescence. Ang-(1-7) treatment induced an increase in nitric oxide and arachidonic acid release and ERK1/2 and Akt phosphorylation in WKY neurons but did not have an effect in SHR neurons. Although SHR neurons showed greater MasR expression, Ang-(1-7)-elicited responses were substantially diminished presumably due to decreased Ang-(1-7) endogenous levels concomitant with impaired binding to its receptor. Through immunocolocalization studies, we evidenced that upon Ang-(1-7) stimulation MasRs were internalized through clathrin-coated pits and caveolae into early endosomes and slowly recycled back to the plasma membrane. However, the fraction of internalized MasRs into early endosomes was larger and the fraction of MasRs recycled back to the plasma membrane was smaller in SHR than in WKY neurons. Surprisingly, in SHR neurons but not in WKY neurons, Ang-(1-7) induced MasR translocation to the nucleus. Nuclear MasR expression and Ang-(1-7) levels were significantly greater in the nuclei of Ang-(1-7)-stimulated SHR neurons, indicating that the MasR is translocated with its ligand bound to it. CONCLUSION: MasRs display differential trafficking in brainstem neurons from SHRs, which may contribute to the impaired responses to Ang-(1-7).


Asunto(s)
Angiotensina I/farmacología , Tronco Encefálico/efectos de los fármacos , Hipertensión/metabolismo , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Proteínas Proto-Oncogénicas/agonistas , Receptores Acoplados a Proteínas G/agonistas , Transporte Activo de Núcleo Celular , Animales , Animales Recién Nacidos , Ácido Araquidónico/metabolismo , Tronco Encefálico/metabolismo , Tronco Encefálico/fisiopatología , Células Cultivadas , Modelos Animales de Enfermedad , Endocitosis , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hipertensión/fisiopatología , Ligandos , Neuronas/metabolismo , Óxido Nítrico/metabolismo , Fosforilación , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Receptores Acoplados a Proteínas G/metabolismo
14.
Nat Rev Cardiol ; 16(8): 476-490, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30894678

RESUMEN

Hypertension is an important risk factor for cardiovascular morbidity and mortality and for events such as myocardial infarction, stroke, heart failure and chronic kidney disease and is a major determinant of disability-adjusted life-years. Despite the importance of hypertension, the pathogenesis of essential hypertension, which involves the complex interaction of several mechanisms, is still poorly understood. Evidence suggests that interplay between bone marrow, microglia and immune mediators underlies the development of arterial hypertension, in particular through mechanisms involving cytokines and peptides, such as neuropeptide Y, substance P, angiotensin II and angiotensin-(1-7). Chronic psychological stress also seems to have a role in increasing the risk of hypertension, probably through the activation of neuroimmune pathways. In this Review, we summarize the available data on the possible role of neuroimmune crosstalk in the origin and maintenance of arterial hypertension and discuss the implications of this crosstalk for recovery and rehabilitation after cardiac and cerebral injuries.


Asunto(s)
Hipertensión/fisiopatología , Neuroinmunomodulación/fisiología , Animales , Médula Ósea/fisiología , Médula Ósea/fisiopatología , Humanos , Hipertensión/inmunología , Inflamación/fisiopatología , Microglía/fisiología , Estrés Psicológico/fisiopatología
15.
Clin Sci (Lond) ; 132(10): 1021-1038, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29802208

RESUMEN

All the components of the classic renin-angiotensin system (RAS) have been identified in the brain. Today, the RAS is considered to be composed mainly of two axes: the pressor axis, represented by angiotensin (Ang) II/angiotensin-converting enzyme/AT1 receptors, and the depressor and protective one, represented by Ang-(1-7)/ angiotensin-converting enzyme 2/Mas receptors. Although the RAS exerts a pivotal role on electrolyte homeostasis and blood pressure regulation, their components are also implicated in higher brain functions, including cognition, memory, anxiety and depression, and several neurological disorders. Overactivity of the pressor axis of the RAS has been implicated in stroke and several brain disorders, such as cognitive impairment, dementia, and Alzheimer or Parkinson's disease. The present review is focused on the role of the protective axis of the RAS in brain disorders beyond its effects on blood pressure regulation. Furthermore, the use of drugs targeting centrally RAS and its beneficial effects on brain disorders are also discussed.


Asunto(s)
Encefalopatías/fisiopatología , Sistema Renina-Angiotensina/fisiología , Enfermedad de Alzheimer/fisiopatología , Angiotensina I/fisiología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Ansiedad/fisiopatología , Encefalopatías/prevención & control , Cognición/fisiología , Humanos , Fragmentos de Péptidos/fisiología , Sistema Renina-Angiotensina/efectos de los fármacos , Accidente Cerebrovascular/fisiopatología , Investigación Biomédica Traslacional/métodos
16.
Rev. argent. cardiol ; 86(1): 8-14, Feb. 2018.
Artículo en Inglés | LILACS | ID: biblio-990511

RESUMEN

ABSTRACT: Background: The aim of this study was to determine the presence of alterations in the natriuretic systems of atrial natriuretic peptide and renal dopamine in a model of metabolic syndrome induced by fructose overload and to associate them with changes in systolic blood pressure, renal function, Na+/K+-ATPase status and microalbuminuria. Methods: Male Sprague-Dawley rats were divided into control (C) and fructose (F) groups receiving drinking water or a fructose so-lution (10% W/V), respectively, for 4, 8 and 12 weeks. L-dopa and dopamine, sodium, creatinine and albumin were measured in urine and ANP, insulin, sodium and creatinine in plasma. Systolic blood pressure was measured by indirect method and the renal activity and expression of Na+/K+-ATPase as well as the renal expression of A- and C-type natriuretic peptide receptors were assessed. results: Fructose overload was associated with a significant increase in insulinemia and systolic blood pressure levels and a decrease in urinary sodium excretion since week 4. A significant increase in L-dopa excretion and a decrease in dopamine excretion (increased urinary L-dopa/dopamine ratio) due to fructose overload were observed since week 4 with a decrease in plasma atrial natriuretic peptide at weeks 8 and 12. These changes were accompanied by increased activity and expression of Na+/ K+-ATPase, decreased A-type natriuretic peptide receptor and increased C-type natriuretic peptide receptor expression. Microalbuminuria was observed at week 12 of fructose overload.


RESUMEN: Objetivos: El objetivo del trabajo consistió en determinar la existencia de alteraciones en los sistemas natriuréticos del péptido natriurético atrial y dopamina renal en un modelo de síndrome metabólico por sobrecarga de fructosa y asociarlas con cambios en la presión arterial sistólica, función renal, estado de la Na+, K+-ATPasa y microalbuminuria. Material y Métodos: Ratas macho Sprague-Dawley fueron divididas en grupos control (C) y fructosa (F) con agua o solución de F (10%P/V) para beber durante 4, 8 y 12 semanas. En orina, se midió L-dopa y dopamina, sodio, creatinina y albúmina; y en plasma péptido natriurético atrial, insulina, sodio y creatinina. La presión arterial sistólica fue medida por método indirecto. Se midió la actividad y expresión de la Na+, K+-ATPasa así como la expresión del receptor de péptidos natriuréticos A y C renales. resultados: La sobrecarga de fructosa se asoció con el aumento de la insulinemia y la presión arterial sistólica, y con la disminución en la excreción urinaria de sodio desde la semana 4. La excreción urinaria de L-dopa se incrementó y la de dopamina disminuyó (cociente L-dopa/dopamina incrementado) por sobrecarga de fructosa desde la semana 4 y el péptido natriurético atrial plasmático se redujo en las semanas 8 y 12. Estos cambios fueron acompañados por un incremento de la actividad y expresión de la Na+, K+-ATPasa, disminución del receptor de péptidos natriuréticos A y aumento del C. La microalbuminuria se observó en la semana 12 de sobrecarga de fructosa. Conclusiones: Las alteraciones del péptido natriurético atrial y de la dopamina renal se asociaron con el desarrollo de hipertensión arterial y precedieron a la aparición de microalbuminuria, por lo que se pudo establecer una asociación temporal entre la alteración de ambos sistemas y el desarrollo de daño renal.

17.
J Nutr Biochem ; 51: 47-55, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29091814

RESUMEN

Insulin resistance induced by a high-fructose diet has been associated to hypertension and renal damage. The aim of this work was to assess alterations in the urinary L-dopa/dopamine ratio over three time periods in rats with insulin resistance induced by fructose overload and its correlation with blood pressure levels and the presence of microalbuminuria and reduced nephrin expression as markers of renal structural damage. Male Sprague-Dawley rats were randomly divided into six groups: control (C) (C4, C8 and C12) with tap water to drink and fructose-overloaded (FO) rats (FO4, FO8 and FO12) with a fructose solution (10% w/v) to drink for 4, 8 and 12 weeks. A significant increase of the urinary L-dopa/dopamine ratio was found in FO rats since week 4, which positively correlated to the development of hypertension and preceded in time the onset of microalbuminuria and reduced nephrin expression observed on week 12 of treatment. The alteration of this ratio was associated to an impairment of the renal dopaminergic system, evidenced by a reduction in renal dopamine transporters and dopamine D1 receptor expression, leading to an overexpression and overactivation of the enzyme Na+, K+-ATPase with sodium retention. In conclusion, urinary L-dopa/dopamine ratio alteration in rats with fructose overload positively correlated to the development of hypertension and preceded in time the onset of renal structural damage. This is the first study to propose the use of the urinary L-dopa/dopamine index as marker of renal dysfunction that temporarily precedes kidney structural damage induced by fructose overload.


Asunto(s)
Dieta de Carga de Carbohidratos/efectos adversos , Neuronas Dopaminérgicas/metabolismo , Fructosa/efectos adversos , Hipertensión/etiología , Resistencia a la Insulina , Riñón/inervación , Insuficiencia Renal/etiología , Albuminuria/etiología , Algoritmos , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo , Biomarcadores/orina , Progresión de la Enfermedad , Dopamina/orina , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Neuronas Dopaminérgicas/patología , Riñón/metabolismo , Riñón/patología , Riñón/fisiopatología , Levodopa/orina , Masculino , Proteínas de la Membrana/metabolismo , Distribución Aleatoria , Ratas Sprague-Dawley , Receptores de Dopamina D1/metabolismo , Eliminación Renal , Insuficiencia Renal/metabolismo , Insuficiencia Renal/patología , Insuficiencia Renal/fisiopatología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
18.
Hypertension ; 70(5): 982-989, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28874464

RESUMEN

The MAS1 receptor (R) exerts protective effects in the brain, heart, vessels, and kidney. R trafficking plays a critical function in signal termination and propagation and in R resensitization. We examined MAS1R internalization and trafficking on agonist stimulation and the role of ß-arrestin2 in the activation of ERK1/2 (extracellular signal-regulated kinase 1/2) and Akt after MAS1R stimulation. Human embryonic kidney 293T cells were transfected with the coding sequence for MAS1R-YFP (MAS1R fused to yellow fluorescent protein). MAS1R internalization was evaluated by measuring the MAS1R present in the plasma membrane after agonist stimulation using a ligand-binding assay. MAS1R trafficking was evaluated by its colocalization with trafficking markers. MAS1R internalization was blocked in the presence of shRNAcaveolin-1 and with dominant negatives for Eps15 (a protein involved in endocytosed Rs by clathrin-coated pits) and for dynamin. After stimulation, MAS1R colocalized with Rab11-a slow recycling vesicle marker-and not with Rab4-a fast recycling vesicle marker-or LysoTracker-a lysosome marker. Cells transfected with MAS1R showed an increase in Akt and ERK1/2 activation on angiotensin-(1-7) stimulation, which was blocked when the clathrin-coated pits pathway was blocked. Suppression of ß-arrestin2 by shRNA reduced the angiotensin-(1-7)-induced ERK1/2 activation, whereas Akt activation was not modified. We conclude that on agonist stimulation, MAS1R is internalized through clathrin-coated pits and caveolae in a dynamin-dependent manner and is then slowly recycled back to the plasma membrane. MAS1R induced Akt and ERK1/2 activation from early endosomes, and the activation of ERK1/2 was mediated by ß-arrestin2. Thus, MAS1R activity and density may be tightly controlled by the cell.


Asunto(s)
Angiotensina I/metabolismo , Endocitosis/fisiología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fragmentos de Péptidos/metabolismo , Transporte de Proteínas/fisiología , Proteínas Proto-Oncogénicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Arrestina beta 2/metabolismo , Endosomas/fisiología , Células HEK293 , Humanos , Proto-Oncogenes Mas , Transducción de Señal/fisiología
19.
Am J Physiol Regul Integr Comp Physiol ; 311(6): R1173-R1185, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27681328

RESUMEN

Shiga toxin 2 (Stx2)-producing enterohemorrhagic induced brain damage. Since a cerebroprotective action was reported for angiotensin (Ang)-(1-7), our aim was to investigate whether Ang-(1-7) protects from brain damage induced by Stx2-producing enterohemorrhagic Escherichia coli The anterior hypothalamic area of adult male Wistar rats was injected with saline solution or Stx2 or Stx2 plus Ang-(1-7) or Stx2 plus Ang-(1-7) plus A779. Rats received a single injection of Stx2 at the beginning of the experiment, and Ang-(1-7), A779, or saline was administered daily in a single injection for 8 days. Cellular ultrastructural changes were analyzed by transmission electron microscopy. Stx2 induced neurodegeneration, axonal demyelination, alterations in synapse, and oligodendrocyte and astrocyte damage, accompanied by edema. Ang-(1-7) prevented neuronal damage triggered by the toxin in 55.6 ± 9.5% of the neurons and the Stx2-induced synapse dysfunction was reversed. In addition, Ang-(1-7) blocked Stx2-induced demyelination in 92 ± 4% of the axons. Oligodendrocyte damage caused by Stx2 was prevented by Ang-(1-7) but astrocytes were only partially protected by the peptide (38 ± 5% of astrocytes were preserved). Ang-(1-7) treatment resulted in 50% reduction in the number of activated microglial cells induced by Stx2, suggesting an anti-inflammatory action. All these beneficial effects elicited by Ang-(1-7) were blocked by the Mas receptor antagonist and thus it was concluded that Ang-(1-7) protects mainly neurons and oligodendrocytes, and partially astrocytes, in the central nervous system through Mas receptor stimulation.


Asunto(s)
Angiotensina I/administración & dosificación , Infecciones por Escherichia coli/prevención & control , Hipotálamo/patología , Encefalitis Infecciosa/inducido químicamente , Encefalitis Infecciosa/prevención & control , Fragmentos de Péptidos/administración & dosificación , Toxina Shiga II/toxicidad , Animales , Infecciones por Escherichia coli/inducido químicamente , Infecciones por Escherichia coli/patología , Hipotálamo/efectos de los fármacos , Encefalitis Infecciosa/patología , Masculino , Fármacos Neuroprotectores/administración & dosificación , Ratas , Ratas Wistar , Escherichia coli Shiga-Toxigénica/metabolismo , Resultado del Tratamiento
20.
Hypertension ; 68(4): 1039-48, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27550920

RESUMEN

Bradykinin B2 receptor (B2R) and angiotensin-(1-7) Mas receptor (MasR)-mediated effects are physiologically interconnected. The molecular basis for such cross talk is unknown. It is hypothesized that the cross talk occurs at the receptor level. We investigated B2R-MasR heteromerization and the functional consequences of such interaction. B2R fused to the cyan fluorescent protein and MasR fused to the yellow fluorescent protein were transiently coexpressed in human embryonic kidney293T cells. Fluorescence resonance energy transfer analysis showed that B2R and MasR formed a constitutive heteromer, which was not modified by their agonists. B2R or MasR antagonists decreased fluorescence resonance energy transfer efficiency, suggesting that the antagonist promoted heteromer dissociation. B2R-MasR heteromerization induced an 8-fold increase in the MasR ligand-binding affinity. On agonist stimulation, the heteromer was internalized into early endosomes with a slower sequestration rate from the plasma membrane, compared with single receptors. B2R-MasR heteromerization induced a greater increase in arachidonic acid release and extracellular signal-regulated kinase phosphorylation after angiotensin-(1-7) stimulation, and this effect was blocked by the B2R antagonist. Concerning serine/threonine kinase Akt activity, a significant bradykinin-promoted activation was detected in B2R-MasR but not in B2R-expressing cells. Angiotensin-(1-7) and bradykinin elicited antiproliferative effects only in cells expressing B2R-MasR heteromers, but not in cells expressing each receptor alone. Proximity ligation assay confirmed B2R-MasR interaction in human glomerular endothelial cells supporting the interaction between both receptors in vivo. Our findings provide an explanation for the cross talk between bradykinin B2R and angiotensin-(1-7) MasR-mediated effects. B2R-MasR heteromerization induces functional changes in the receptor that may lead to long-lasting protective properties.


Asunto(s)
Angiotensina I/metabolismo , Antagonistas del Receptor de Bradiquinina B2/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fragmentos de Péptidos/metabolismo , Receptor Cross-Talk/fisiología , Receptor de Bradiquinina B2/metabolismo , Análisis de Varianza , Angiotensina I/efectos de los fármacos , Animales , Membrana Celular/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Fragmentos de Péptidos/efectos de los fármacos , Proto-Oncogenes Mas , Ratas , Receptor Cross-Talk/efectos de los fármacos , Receptor de Bradiquinina B2/efectos de los fármacos , Sistema Renina-Angiotensina/efectos de los fármacos , Sistema Renina-Angiotensina/fisiología , Sensibilidad y Especificidad , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA