Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 113(36): 10013-8, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27551086

RESUMEN

The mechanisms leading to the formation of secondary organic aerosol (SOA) are an important subject of ongoing research for both air quality and climate. Recent laboratory experiments suggest that reactions taking place in the atmospheric liquid phase represent a potentially significant source of SOA mass. Here, we report direct ambient observations of SOA mass formation from processing of biomass-burning emissions in the aqueous phase. Aqueous SOA (aqSOA) formation is observed both in fog water and in wet aerosol. The aqSOA from biomass burning contributes to the "brown" carbon (BrC) budget and exhibits light absorption wavelength dependence close to the upper bound of the values observed in laboratory experiments for fresh and processed biomass-burning emissions. We estimate that the aqSOA from residential wood combustion can account for up to 0.1-0.5 Tg of organic aerosol (OA) per y in Europe, equivalent to 4-20% of the total OA emissions. Our findings highlight the importance of aqSOA from anthropogenic emissions on air quality and climate.


Asunto(s)
Aerosoles/química , Contaminantes Atmosféricos/química , Carbono/toxicidad , Clima , Contaminación del Aire , Biomasa , Europa (Continente) , Material Particulado/química , Emisiones de Vehículos/toxicidad , Agua/química
2.
Sci Total Environ ; 485-486: 103-109, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24704961

RESUMEN

The study of organic nitrogen gained importance in recent decades due to its links with acid rain, pollution, and eutrophication. In this study, aerosol and fog water samples collected from two sites in Italy during November 2011 were analyzed to characterize their organic nitrogen content. Organic nitrogen contributed 19-25% of the total soluble nitrogen in the aerosol and around 13% in fog water. The largest water soluble organic nitrogen concentrations in the PM1.2 fraction occurred during the diurnal period with mean values of 2.03 and 2.16 µg-N m(-3) (154 and 145 nmol-N m(-3)) at Bologna and San Pietro Capofiume (SPC), respectively. The mean PM10 WSON concentration during diurnal periods at SPC was 2.30 µg-N m(-3) (164 nmol-N m(-3)) while it was 1.34 and 0.82 µg-N m(-3) (95.7 and 58.5 nmol-N m(-3)) in the night and fog water samples, respectively. Aerosol mass distribution profiles obtained during fog changed significantly with respect to those estimated in periods without fog periods due to fog scavenging, which proved to be over 80% efficient. Linear correlations suggested secondary processes related to combustion and, to a lesser extent, biomass burning, as plausible sources of WSON. Regarding the inorganic nitrogen fraction, the results showed that ammonium was the largest soluble inorganic nitrogen component in the samples.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Nitrógeno/análisis , Tiempo (Meteorología) , Aerosoles/análisis , Eutrofización , Italia , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA