Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nat Immunol ; 24(6): 1020-1035, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37127830

RESUMEN

While regulatory T (Treg) cells are traditionally viewed as professional suppressors of antigen presenting cells and effector T cells in both autoimmunity and cancer, recent findings of distinct Treg cell functions in tissue maintenance suggest that their regulatory purview extends to a wider range of cells and is broader than previously assumed. To elucidate tumoral Treg cell 'connectivity' to diverse tumor-supporting accessory cell types, we explored immediate early changes in their single-cell transcriptomes upon punctual Treg cell depletion in experimental lung cancer and injury-induced inflammation. Before any notable T cell activation and inflammation, fibroblasts, endothelial and myeloid cells exhibited pronounced changes in their gene expression in both cancer and injury settings. Factor analysis revealed shared Treg cell-dependent gene programs, foremost, prominent upregulation of VEGF and CCR2 signaling-related genes upon Treg cell deprivation in either setting, as well as in Treg cell-poor versus Treg cell-rich human lung adenocarcinomas. Accordingly, punctual Treg cell depletion combined with short-term VEGF blockade showed markedly improved control of PD-1 blockade-resistant lung adenocarcinoma progression in mice compared to the corresponding monotherapies, highlighting a promising factor-based querying approach to elucidating new rational combination treatments of solid organ cancers.


Asunto(s)
Neoplasias , Linfocitos T Reguladores , Animales , Ratones , Humanos , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Microambiente Tumoral , Neoplasias/metabolismo
2.
Semin Immunol ; 52: 101476, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33906820

RESUMEN

The immune system mediates powerful effector mechanisms to protect against a diversity of pathogens and equally as important regulatory functions, to limit collateral damage of inflammation, prevent misguided immune responses to "self", and promote tissue repair. Inadequate regulatory control can lead to a variety of inflammatory disorders including autoimmunity, metabolic syndrome, allergies, and progression of malignancies. Cancers evolve complex mechanisms to thwart immune eradication including coopting normal host regulatory processes. This is most evident in the analysis of tumor infiltrating lymphocytes (TILs), where a preponderance of immunosuppressive immune cells, such as regulatory T (Treg) cells are found. Treg cells express the X-chromosome linked transcription factor Foxp3 and play a crucial role in maintaining immune homeostasis by suppressing inflammatory responses in diverse biological settings. Treg cells in the tumor microenvironment promote tumor development and progression by dampening anti-tumor immune responses, directly supporting the survival of transformed cells through elaboration of growth factors, and interacting with accessory cells in tumors such as fibroblasts and endothelial cells. Current insights into the phenotype and function of tumor associated Treg cells have opened up opportunities for their selective targeting in cancer with the goal of alleviating their suppression of anti-tumor immune responses while maintaining overall immune homeostasis. Here, we review Treg cell biology in the context of the tumor microenvironment (TME), and the important role they play in cancer immunotherapy.


Asunto(s)
Neoplasias , Linfocitos T Reguladores , Células Endoteliales , Humanos , Inmunoterapia , Microambiente Tumoral
3.
Immunity ; 53(5): 971-984.e5, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33176163

RESUMEN

Regulatory T (Treg) cell identity is defined by the lineage-specifying transcription factor (TF) Foxp3. Here we examined mechanisms of Foxp3 function by leveraging naturally occurring genetic variation in wild-derived inbred mice, which enables the identification of DNA sequence motifs driving epigenetic features. Chromatin accessibility, TF binding, and gene expression patterns in resting and activated subsets of Treg cells, conventional CD4 T cells, and cells expressing a Foxp3 reporter null allele revealed that the majority of Foxp3-dependent changes occurred at sites not bound by Foxp3. Chromatin accessibility of these indirect Foxp3 targets depended on the presence of DNA binding motifs for other TFs, including TCF1. Foxp3 expression correlated with decreased TCF1 and reduced accessibility of TCF1-bound chromatin regions. Deleting one copy of the Tcf7 gene recapitulated Foxp3-dependent negative regulation of chromatin accessibility. Thus, Foxp3 defines Treg cell identity in a largely indirect manner by fine-tuning the activity of other major chromatin remodeling TFs such as TCF1.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Animales , Enfermedades Autoinmunes/etiología , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/patología , Autoinmunidad/genética , Sitios de Unión , Ensamble y Desensamble de Cromatina , Modelos Animales de Enfermedad , Epigénesis Genética , Femenino , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica , Inmunohistoquímica , Masculino , Ratones , Motivos de Nucleótidos , Especificidad de Órganos/genética , Especificidad de Órganos/inmunología , Unión Proteica , Transactivadores/metabolismo
4.
PLoS Biol ; 17(3): e2006859, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30921319

RESUMEN

Brain metastases are prevalent in various types of cancer and are often terminal, given the low efficacy of available therapies. Therefore, preventing them is of utmost clinical relevance, and prophylactic treatments are perhaps the most efficient strategy. Here, we show that systemic prophylactic administration of a toll-like receptor (TLR) 9 agonist, CpG-C, is effective against brain metastases. Acute and chronic systemic administration of CpG-C reduced tumor cell seeding and growth in the brain in three tumor models in mice, including metastasis of human and mouse lung cancer, and spontaneous melanoma-derived brain metastasis. Studying mechanisms underlying the therapeutic effects of CpG-C, we found that in the brain, unlike in the periphery, natural killer (NK) cells and monocytes are not involved in controlling metastasis. Next, we demonstrated that the systemically administered CpG-C is taken up by endothelial cells, astrocytes, and microglia, without affecting blood-brain barrier (BBB) integrity and tumor brain extravasation. In vitro assays pointed to microglia, but not astrocytes, as mediators of CpG- C effects through increased tumor killing and phagocytosis, mediated by direct microglia-tumor contact. In vivo, CpG-C-activated microglia displayed elevated mRNA expression levels of apoptosis-inducing and phagocytosis-related genes. Intravital imaging showed that CpG-C-activated microglia cells contact, kill, and phagocytize tumor cells in the early stages of tumor brain invasion more than nonactivated microglia. Blocking in vivo activation of microglia with minocycline, and depletion of microglia with a colony-stimulating factor 1 inhibitor, indicated that microglia mediate the antitumor effects of CpG-C. Overall, the results suggest prophylactic CpG-C treatment as a new intervention against brain metastasis, through an essential activation of microglia.


Asunto(s)
Neoplasias Encefálicas/complicaciones , Neoplasias Encefálicas/metabolismo , Microglía/metabolismo , Microglía/patología , Oligodesoxirribonucleótidos/uso terapéutico , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Factores Estimulantes de Colonias/antagonistas & inhibidores , Factores Estimulantes de Colonias/metabolismo , Femenino , Humanos , Neoplasias Pulmonares/complicaciones , Neoplasias Pulmonares/metabolismo , Masculino , Melanoma/complicaciones , Melanoma/metabolismo , Ratones , Minociclina/metabolismo , Fagocitosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
5.
Eur J Immunol ; 49(2): 228-241, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30536875

RESUMEN

Natural killer (NK) cells are innate lymphocytes that efficiently eliminate cancerous and infected cells. NKp46 is an important NK activating receptor shown to participate in recognition and activation of NK cells against pathogens, tumor cells, virally infected cells, and self-cells in autoimmune conditions, including type I and II diabetes. However, some of the NKp46 ligands are unknown and therefore investigating human NKp46 activity and its critical role in NK cell biology is problematic. We developed a unique anti-human NKp46 monocloncal antibody, denoted hNKp46.02 (02). The 02 mAb can induce receptor internalization and degradation. By binding to a unique epitope on a particular domain of NKp46, 02 lead NKp46 to lysosomal degradation. This downregulation therefore enables the investigation of all NKp46 activities. Indeed, using the 02 mAb we determined NK cell targets which are critically dependent on NKp46 activity, including certain tumor cells lines and human pancreatic beta cells. Most importantly, we showed that a toxin-conjugated 02 inhibits the growth of NKp46-positive cells; thus, exemplifying the potential of 02 in becoming an immunotherapeutic drug to treat NKp46-dependent diseases, such as, type I diabetes and NK and T cell related malignancies.


Asunto(s)
Anticuerpos Monoclonales/química , Antígenos Ly/metabolismo , Diabetes Mellitus Tipo 1 , Células Asesinas Naturales/metabolismo , Receptor 1 Gatillante de la Citotoxidad Natural/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias , Animales , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Células Jurkat , Células K562 , Ratones , Neoplasias/diagnóstico , Neoplasias/metabolismo
7.
Immunity ; 48(1): 107-119.e4, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29329948

RESUMEN

Natural killer (NK) cells are innate lymphoid cells, and their presence within human tumors correlates with better prognosis. However, the mechanisms by which NK cells control tumors in vivo are unclear. Here, we used reflectance confocal microscopy (RCM) imaging in humans and in mice to visualize tumor architecture in vivo. We demonstrated that signaling via the NK cell receptor NKp46 (human) and Ncr1 (mouse) induced interferon-γ (IFN-γ) secretion from intratumoral NK cells. NKp46- and Ncr1-mediated IFN-γ production led to the increased expression of the extracellular matrix protein fibronectin 1 (FN1) in the tumors, which altered primary tumor architecture and resulted in decreased metastases formation. Injection of IFN-γ into tumor-bearing mice or transgenic overexpression of Ncr1 in NK cells in mice resulted in decreased metastasis formation. Thus, we have defined a mechanism of NK cell-mediated control of metastases in vivo that may help develop NK cell-dependent cancer therapies.


Asunto(s)
Antígenos Ly/metabolismo , Fibronectinas/metabolismo , Interferón gamma/metabolismo , Células Asesinas Naturales/metabolismo , Receptor 1 Gatillante de la Citotoxidad Natural/metabolismo , Neoplasias/metabolismo , Animales , Western Blotting , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Ratones , Microscopía Confocal , Metástasis de la Neoplasia/genética , Neoplasias/patología , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/genética
8.
Sci Rep ; 7(1): 13090, 2017 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-29026144

RESUMEN

Natural Killer (NK) cells employ activating receptors like the Natural Cytotoxicity Receptors (NCRs: NKp30, NKp44 and NKp46), of which only NKp46 has a mouse orthologue (Ncr1), to eliminate abnormal cells. NKp46/Ncr1 is considered a selective marker for NK cells, although it is also found on a subset of ILCs, where it appears to be without function. The influenza virus hemagglutinin (HA) was the first ligand identified for Ncr1/NKp46 followed by other viral, bacterial and even fungal ligands. NKp46/Ncr1 also recognizes unknown self and tumor ligands. Here we describe the generation of a transgenic mouse where the Ncr1 gene is expressed in the Rosa locus, preceded by a floxed stop sequence allowing Ncr1/NKp46 expression in various tissues upon crossing with Cre transgenic mouse lines. Surprisingly, while several crossings were attempted, Ncr1 overexpression was successful only where cre recombinase expression was dependent on the Ncr1 promoter. Ncr1 overexpression in NK cells increased NK cell immunity in two hallmark Ncr1 related pathologies, influenza virus infection and B16 melanoma. These data suggest that increasing NK cell cytotoxicity by enforced NKp46/Ncr1 expression serves as a potential therapeutic opportunity for the treatment of various pathologies, and in immunotherapy.


Asunto(s)
Antígenos Ly/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Receptor 1 Gatillante de la Citotoxidad Natural/metabolismo , Animales , Antígenos Ly/genética , Modelos Animales de Enfermedad , Humanos , Gripe Humana/inmunología , Melanoma Experimental/inmunología , Melanoma Experimental/metabolismo , Ratones , Ratones Transgénicos , Receptor 1 Gatillante de la Citotoxidad Natural/genética , Orthomyxoviridae/inmunología , Orthomyxoviridae/patogenicidad
9.
J Virol ; 91(22)2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28878071

RESUMEN

NK cells are innate lymphocytes that participate in many immune processes encompassing cancer, bacterial and fungal infection, autoimmunity, and even pregnancy and that specialize in antiviral defense. NK cells express inhibitory and activating receptors and kill their targets when activating signals overpower inhibitory signals. The NK cell inhibitory receptors include a uniquely diverse array of proteins named killer cell immunoglobulin-like receptors (KIRs), the CD94 family, and the leukocyte immunoglobulin-like receptor (LIR) family. The NK cell inhibitory receptors recognize mostly major histocompatibility complex (MHC) class I (MHC-I) proteins. Zika virus has recently emerged as a major threat due to its association with birth defects and its pandemic potential. How Zika virus interacts with the immune system, and especially with NK cells, is unclear. Here we show that Zika virus infection is barely sensed by NK cells, since little or no increase in the expression of activating NK cell ligands was observed following Zika infection. In contrast, we demonstrate that Zika virus infection leads to the upregulation of MHC class I proteins and consequently to the inhibition of NK cell killing. Mechanistically, we show that MHC class I proteins are upregulated via the RIGI-IRF3 pathway and that this upregulation is mediated via beta interferon (IFN-ß). Potentially, countering MHC class I upregulation during Zika virus infection could be used as a prophylactic treatment against Zika virus.IMPORTANCE NK cells are innate lymphocytes that recognize and eliminate various pathogens and are known mostly for their role in controlling viral infections. NK cells express inhibitory and activating receptors, and they kill or spare their targets based on the integration of inhibitory and activating signals. Zika virus has recently emerged as a major threat to humans due to its pandemic potential and its association with birth defects. The role of NK cells in Zika virus infection is largely unknown. Here we demonstrate that Zika virus infection is almost undetected by NK cells, as evidenced by the fact that the expression of activating ligands for NK cells is not induced following Zika infection. We identified a mechanism whereby Zika virus sensing via the RIGI-IRF3 pathway resulted in IFN-ß-mediated upregulation of MHC-I molecules and inhibition of NK cell activity. Countering MHC class I upregulation and boosting NK cell activity may be employed as prophylactic measures to combat Zika virus infection.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/inmunología , Evasión Inmune , Células Asesinas Naturales/inmunología , Regulación hacia Arriba/inmunología , Infección por el Virus Zika/inmunología , Virus Zika/inmunología , Células A549 , Animales , Chlorocebus aethiops , Proteína 58 DEAD Box/inmunología , Humanos , Factor 3 Regulador del Interferón/inmunología , Interferón beta/inmunología , Células Asesinas Naturales/patología , Receptores Inmunológicos , Células Vero , Infección por el Virus Zika/patología
10.
J Virol ; 91(19)2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28724773

RESUMEN

The recent approval of oncolytic virus for therapy of melanoma patients has increased the need for precise evaluation of the mechanisms by which oncolytic viruses affect tumor growth. Here we show that the human NK cell-activating receptor NKp46 and the orthologous mouse protein NCR1 recognize the reovirus sigma1 protein in a sialic-acid-dependent manner. We identify sites of NKp46/NCR1 binding to sigma1 and show that sigma1 binding by NKp46/NCR1 leads to NK cell activation in vitro Finally, we demonstrate that NCR1 activation is essential for reovirus-based therapy in vivo Collectively, we have identified sigma1 as a novel ligand for NKp46/NCR1 and demonstrated that NKp46/NCR1 is needed both for clearance of reovirus infection and for reovirus-based tumor therapy.IMPORTANCE Reovirus infects much of the population during childhood, causing mild disease, and hence is considered to be efficiently controlled by the immune system. Reovirus also specifically infects tumor cells, leading to tumor death, and is currently being tested in human clinical trials for cancer therapy. The mechanisms by which our immune system controls reovirus infection and tumor killing are not well understood. We report here that natural killer (NK) cells recognize a viral protein named sigma1 through the NK cell-activating receptor NKp46. Using several mouse tumor models, we demonstrate the importance of NK cells in protection from reovirus infection and in reovirus killing of tumors in vivo Collectively, we identify a new ligand for the NKp46 receptor and provide evidence for the importance of NKp46 in the control of reovirus infections and in reovirus-based cancer therapy.


Asunto(s)
Antígenos Ly/metabolismo , Células Asesinas Naturales/inmunología , Orthoreovirus Mamífero 3/metabolismo , Receptor 1 Gatillante de la Citotoxidad Natural/metabolismo , Viroterapia Oncolítica/métodos , Virus Oncolíticos/metabolismo , Proteínas Virales/metabolismo , Animales , Sitios de Unión , Chlorocebus aethiops , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Humanos , Activación de Linfocitos/inmunología , Melanoma/terapia , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ácido N-Acetilneuramínico/metabolismo , Células Vero , Proteínas Virales/genética
11.
Cell Rep ; 20(1): 40-47, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28683322

RESUMEN

Urinary tract infection (UTI) is the most common type of bacterial infection in humans. Fifty percent of all women will experience at least one UTI in their lifetime, with uropathogenic Escherichia coli (UPEC) accounting for 80% of reported cases. UTI evokes a complex, well-timed immune response that is crucial for bacterial clearance. The majority of immune cells participating in the immune response are absent from the healthy bladder, and the mechanisms used to recruit them upon UTI are not fully understood. Here, we show that immediately after UPEC infection, bladder epithelial cells secrete stromal cell-derived factor 1 (SDF-1), initiating immune cell accumulation at the site of infection. SDF-1 blockade significantly reduced immune cell migration to the infected bladder, resulting in severe exacerbation of infection. We also show that FimH, the adhesin of type 1 fimbria, one of UPEC's virulence factors, is directly involved in the secretion of SDF-1 upon UTI.


Asunto(s)
Quimiocina CXCL12/inmunología , Inmunidad Innata , Infecciones Urinarias/inmunología , Adhesinas de Escherichia coli/inmunología , Animales , Quimiocina CXCL12/metabolismo , Escherichia coli Enteropatógena/inmunología , Escherichia coli Enteropatógena/patogenicidad , Femenino , Proteínas Fimbrias/inmunología , Células Asesinas Naturales/inmunología , Ratones , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Linfocitos T/inmunología , Infecciones Urinarias/microbiología , Urotelio/inmunología , Urotelio/metabolismo
12.
Eur J Immunol ; 47(4): 692-703, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28191644

RESUMEN

Natural killer (NK) cells are capable of killing various pathogens upon stimulation of activating receptors. Human metapneumovirus (HMPV) is a respiratory virus, which was discovered in 2001 and is responsible for acute respiratory tract infection in infants and children worldwide. HMPV infection is very common, infecting around 70% of all children under the age of five. Under immune suppressive conditions, HMPV infection can be fatal. Not much is known on how NK cells respond to HMPV. In this study, using reporter assays and NK-cell cytotoxicity assays performed with human and mouse NK cells, we demonstrated that the NKp46-activating receptor and its mouse orthologue Ncr1, both members of the natural cytotoxicity receptor (NCR) family, recognized an unknown ligand expressed by HMPV-infected human cells. We demonstrated that MHC class I is upregulated and MICA is downregulated upon HMPV infection. We also characterized mouse NK-cell phenotype in the blood and the lungs of HMPV-infected mice and found that lung NK cells are more activated and expressing NKG2D, CD43, CD27, KLRG1, and CD69 compared to blood NK cells regardless of HMPV infection. Finally, we demonstrated, using Ncr1-deficient mice, that NCR1 plays a critical role in controlling HMPV infection.


Asunto(s)
Antígenos Ly/metabolismo , Células Asesinas Naturales/inmunología , Pulmón/inmunología , Metapneumovirus/inmunología , Receptor 1 Gatillante de la Citotoxidad Natural/metabolismo , Infecciones por Paramyxoviridae/inmunología , Animales , Antígenos Ly/genética , Niño , Citotoxicidad Inmunológica , Células HEK293 , Humanos , Lactante , Células Asesinas Naturales/virología , Activación de Linfocitos , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Receptor 1 Gatillante de la Citotoxidad Natural/genética , Carga Viral
13.
Sci Rep ; 7: 40944, 2017 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-28134248

RESUMEN

Natural killer (NK) cells eradicate infected cells and tumors following the triggering of activating receptors, like the Natural Cytotoxicity Receptors (NCRs), which include NKp30, NKp44 and NKp46. NKp46 is the only NCR expressed in mice (mNKp46), and except for some Innate Lymphoid Cell (ILC) populations (ILC1/3 subsets), its expression is restricted to NK cells. Previously, a mouse named Noé was generated in which a random point mutation (W32R) impaired the cell surface expression of mNKp46. Interestingly, the Noé mice NK cells expressed twice as much of the transcription factor Helios, and displayed general non-NKp46 specific hyperactivity. We recently showed that the mNKp46 W32R (Noé) protein was expressed on the surface of various cells; albeit slowly and unstably, that it is aberrantly glycosylated and accumulates in the ER. Interestingly, the Tryptophan (Trp) residue in position 32 is conserved between humans and mice. Therefore, we studied here the human orthologue protein of mNKp46 W32R, the human NKp46 W32R. We demonstrated that NKp46 W32R is aberrantly glycosylated, accumulates in the ER, and is unstable on the cell surface. Furthermore, we showed that overexpression of NKp46 W32R or Helios resulted in augmented NK cell activation, which may be applied to boost NK activity for therapeutic applications.


Asunto(s)
Células Asesinas Naturales/química , Proteínas Mutantes/análisis , Proteínas Mutantes/genética , Mutación Missense , Receptor 1 Gatillante de la Citotoxidad Natural/análisis , Receptor 1 Gatillante de la Citotoxidad Natural/genética , Células Cultivadas , Retículo Endoplásmico/química , Células Epiteliales/química , Glicosilación , Hepatocitos/química , Humanos , Proteínas de la Membrana/análisis , Proteínas Mutantes/metabolismo , Receptor 1 Gatillante de la Citotoxidad Natural/metabolismo , Linfocitos T/química
14.
Cell Host Microbe ; 20(4): 527-534, 2016 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-27736647

RESUMEN

Natural killer (NK) cells form an important arm of the innate immune system and function to combat a wide range of invading pathogens, ranging from viruses to bacteria. However, the means by which NK cells accomplish recognition of pathogens with a limited repertoire of receptors remain largely unknown. In the current study, we describe the recognition of an emerging fungal pathogen, Candida glabrata, by the human NK cytotoxic receptor NKp46 and its mouse ortholog, NCR1. Using NCR1 knockout mice, we observed that this receptor-mediated recognition was crucial for controlling C. glabrata infection in vitro and in vivo. Finally, we delineated the fungal ligands to be the C. glabrata adhesins Epa1, Epa6, and Epa7 and demonstrated that clearance of systemic C. glabrata infections in vivo depends on their recognition by NCR1. As NKp46 and NCR1 have been previously shown to bind viral adhesion receptors, we speculate that NKp46/NCR1 may be a novel type of pattern recognition receptor.


Asunto(s)
Antígenos Ly/metabolismo , Candida glabrata/inmunología , Proteínas Fúngicas/metabolismo , Células Asesinas Naturales/inmunología , Receptor 1 Gatillante de la Citotoxidad Natural/metabolismo , Animales , Antígenos Ly/genética , Candidiasis/inmunología , Modelos Animales de Enfermedad , Humanos , Ratones Endogámicos BALB C , Ratones Noqueados , Receptor 1 Gatillante de la Citotoxidad Natural/genética
15.
Oncotarget ; 7(11): 13093-105, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26919106

RESUMEN

Natural Killer (NK) cells are critical in the defense against viruses in general and against influenza in particular. We previously demonstrated that the activating NK cell receptor NKp46 is involved in the killing of influenza-virus infected cells through its interaction with viral hemagglutinin (HA). Furthermore, the recognition by NKp46 and consequent elimination of influenza infected cells were determined to be sialic-acid dependent. Here, we show that the human co-activating receptors 2B4 and NTB-A directly recognize the viral HA protein and co-stimulate killing by NK cells. We demonstrate that the 2B4/NTB-A-HA interactions require the sialylation of these receptors, and we identified the binding sites mediating these interactions. We also show that the virus counters these interactions through its neuraminidase (NA) protein. These results emphasize the critical role played by NK cells in eliminating influenza, a significant cause of worldwide morbidity and mortality.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Gripe Humana/inmunología , Células Asesinas Naturales/inmunología , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/inmunología , Línea Celular Tumoral , Citotoxicidad Inmunológica/inmunología , Humanos , Subtipo H1N1 del Virus de la Influenza A
16.
J Immunol ; 195(8): 3959-69, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26371250

RESUMEN

NK cells kill various cells using activating receptors, such as the natural cytotoxicity receptors (NCRs). NKp46 is a major NCR and is the only NCR expressed in mice (denoted Ncr1). Using Ncr1-deficient mice (Ncr1(gfp/pfp)) we demonstrated that Ncr1 controls various pathologies, and that in its absence Ncr1-related functions are impaired. In 2012, another Ncr1-related mouse was generated, named Noé, in which a random mutation, W32R, in position 32, impaired the Ncr1-Noé cell surface expression. Interestingly, in the Noé mice, Ncr1-dependent deficiencies were not observed. Additionally, the Noé-NK cells were hyperactivated, probably due to increased Helios expression, and the Noé mice demonstrate increased clearance of influenza and murine CMV. In contrast, in the Ncr1(gfp/pfp) mice infection with influenza was lethal and we show in the present study no difference in murine CMV infection between Ncr1(gfp/pfp) and wild-type (WT) mice. Because the foremost difference between the Noé and Ncr1(gfp/gfp) mice is the presence of a mutated Ncr1-Noé protein, we studied its properties. We show that Ncr1-Noé and various other Ncr1 mutants in position 32 can be expressed on the surface, albeit slowly and unstably, and that ligand recognition and function of the various Ncr1-Noé is similar to the WT Ncr1. We further show that the glycosylation pattern of Ncr1-Noé is aberrant, that the Ncr1-Noé proteins accumulate in the endoplasmic reticulum, and that the expression of Ncr1-Noé proteins, but not WT Ncr1, leads to increased Helios expression. Thus, we suggest that the NK hyperactivated phenotype observed in the Noé mice might result from the presence of the Ncr1-Noé protein.


Asunto(s)
Antígenos Ly/inmunología , Regulación de la Expresión Génica/inmunología , Receptor 1 Gatillante de la Citotoxidad Natural/inmunología , Animales , Antígenos Ly/genética , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Glicosilación , Humanos , Factor de Transcripción Ikaros/genética , Factor de Transcripción Ikaros/inmunología , Ratones , Ratones Transgénicos , Mutación , Receptor 1 Gatillante de la Citotoxidad Natural/genética , Factores de Transcripción/genética , Factores de Transcripción/inmunología
17.
Nat Immunol ; 16(4): 376-85, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25729921

RESUMEN

An important cause of obesity-induced insulin resistance is chronic systemic inflammation originating in visceral adipose tissue (VAT). VAT inflammation is associated with the accumulation of proinflammatory macrophages in adipose tissue, but the immunological signals that trigger their accumulation remain unknown. We found that a phenotypically distinct population of tissue-resident natural killer (NK) cells represented a crucial link between obesity-induced adipose stress and VAT inflammation. Obesity drove the upregulation of ligands of the NK cell-activating receptor NCR1 on adipocytes; this stimulated NK cell proliferation and interferon-γ (IFN-γ) production, which in turn triggered the differentiation of proinflammatory macrophages and promoted insulin resistance. Deficiency of NK cells, NCR1 or IFN-γ prevented the accumulation of proinflammatory macrophages in VAT and greatly ameliorated insulin sensitivity. Thus NK cells are key regulators of macrophage polarization and insulin resistance in response to obesity-induced adipocyte stress.


Asunto(s)
Adipocitos/inmunología , Resistencia a la Insulina/inmunología , Grasa Intraabdominal/inmunología , Células Asesinas Naturales/inmunología , Macrófagos/inmunología , Obesidad/inmunología , Adipocitos/patología , Animales , Antígenos Ly/genética , Antígenos Ly/inmunología , Diferenciación Celular , Femenino , Regulación de la Expresión Génica , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Insulina/inmunología , Interferón gamma/biosíntesis , Interferón gamma/inmunología , Grasa Intraabdominal/patología , Células Asesinas Naturales/patología , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptor 1 Gatillante de la Citotoxidad Natural/genética , Receptor 1 Gatillante de la Citotoxidad Natural/inmunología , Obesidad/genética , Obesidad/patología , Transducción de Señal
18.
Cell Discov ; 1: 15036, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27462433

RESUMEN

Natural killer (NK) cells kill tumor and virus-infected cells using activating NK cell receptors. One of the major NK-activating receptors is NKp46 and its mouse ortholog Ncr1. NKp46/Ncr1 is expressed exclusively on NK cells and on a subset of innate lymphoid cells. NKp46/Ncr1 was shown to be involved in a myriad of pathologies and immunological settings. Specifically, NKp46/Ncr1 was shown to interact with the viral hemagglutinin (HA) protein and with an unknown tumor/cellular ligand. NKp46 and Ncr1 are structurally similar; however, they are substantially different in their glycosylation patterns. Although the human NKp46 carries both O- and N-glycosylations that are essential for its activity, the mouse Ncr1 was predicted to have N-linked glycosylations only. Here we discovered using prediction algorithms and high-performance liquid chromatography analysis that Ncr1 carries two putative novel O-glycosylations, one of which (Thr 225) is conserved in NKp46. We next used surface plasmon resonance, biochemical, mutational and functional in vitro and in vivo assays to demonstrate that the putative O-glycosylations of Ncr1 are critical for its function.

19.
Cell Host Microbe ; 14(6): 664-74, 2013 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-24331464

RESUMEN

Uropathogenic Escherichia coli (UPEC) are a common cause of urinary tract infections (UTIs) in humans. While the importance of natural killer (NK) cells in innate immune protection against tumors and viral infections is well documented, their role in defense against bacterial infections is still emerging, and their involvement in UPEC-mediated UTI is practically unknown. Using a systematic mutagenesis approach, we found that UPEC adheres to NK cells primarily via its type I fimbriae and employs its hemolysinA toxin to kill NK cells. In the absence of hemolysinA, NK cells directly respond to the bacteria and secrete the cytokine TNF-α, which results in decreased bacterial numbers in vitro and reduction of bacterial burden in the infected bladders. Thus, NK cells control UPEC via TNF-α production, which UPEC counteracts by hemolysinA-mediated killing of NK cells, representing a previously unrecognized host defense and microbial counterattack mechanism in the context of UTI.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas Hemolisinas/metabolismo , Interacciones Huésped-Patógeno , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/fisiología , Escherichia coli Uropatógena/inmunología , Escherichia coli Uropatógena/fisiología , Factores de Virulencia/metabolismo , Animales , Carga Bacteriana , Supervivencia Celular , Células Cultivadas , Elementos Transponibles de ADN , Proteínas de Escherichia coli/genética , Técnicas de Inactivación de Genes , Proteínas Hemolisinas/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Mutagénesis Insercional , Factor de Necrosis Tumoral alfa/inmunología , Escherichia coli Uropatógena/patogenicidad , Factores de Virulencia/genética
20.
PLoS Pathog ; 9(8): e1003568, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23966863

RESUMEN

Natural killer (NK) cells are innate immune cells able to rapidly kill virus-infected and tumor cells. Two NK cell populations are found in the blood; the majority (90%) expresses the CD16 receptor and also express the CD56 protein in intermediate levels (CD56(Dim) CD16(Pos)) while the remaining 10% are CD16 negative and express CD56 in high levels (CD56(Bright) CD16(Neg)). NK cells also reside in some tissues and traffic to various infected organs through the usage of different chemokines and chemokine receptors. Kaposi's sarcoma-associated herpesvirus (KSHV) is a human virus that has developed numerous sophisticated and versatile strategies to escape the attack of immune cells such as NK cells. Here, we investigate whether the KSHV derived cytokine (vIL-6) and chemokines (vMIP-I, vMIP-II, vMIP-III) affect NK cell activity. Using transwell migration assays, KSHV infected cells, as well as fusion and recombinant proteins, we show that out of the four cytokine/chemokines encoded by KSHV, vMIP-II is the only one that binds to the majority of NK cells, affecting their migration. We demonstrate that vMIP-II binds to two different receptors, CX3CR1 and CCR5, expressed by naïve CD56(Dim) CD16(Pos) NK cells and activated NK cells, respectively. Furthermore, we show that the binding of vMIP-II to CX3CR1 and CCR5 blocks the binding of the natural ligands of these receptors, Fractalkine (Fck) and RANTES, respectively. Finally, we show that vMIP-II inhibits the migration of naïve and activated NK cells towards Fck and RANTES. Thus, we present here a novel mechanism in which KSHV uses a unique protein that antagonizes the activity of two distinct chemokine receptors to inhibit the migration of naïve and activated NK cells.


Asunto(s)
Fármacos Anti-VIH/farmacología , Antagonistas de los Receptores CCR5 , Movimiento Celular/efectos de los fármacos , Quimiocinas/farmacología , Herpesvirus Humano 8/química , Células Asesinas Naturales/efectos de los fármacos , Receptores de Quimiocina/antagonistas & inhibidores , Receptor 1 de Quimiocinas CX3C , Células Cultivadas , Quimiocina CCL5/metabolismo , Quimiocina CX3CL1/metabolismo , Citocinas/genética , Citocinas/metabolismo , Humanos , Immunoblotting , Interleucina-6 , Células Asesinas Naturales/citología , Células Asesinas Naturales/metabolismo , Reacción en Cadena de la Polimerasa , Receptores CCR5/genética , Receptores CCR5/metabolismo , Receptores de Quimiocina/genética , Receptores de Quimiocina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA