Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Commun ; 14(1): 8049, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38081811

RESUMEN

The mammalian DNA replication timing (RT) program is crucial for the proper functioning and integrity of the genome. The best-known mechanism for controlling RT is the suppression of late origins of replication in heterochromatin by RIF1. Here, we report that in antigen-activated, hypermutating murine B lymphocytes, RIF1 binds predominantly to early-replicating active chromatin and promotes early replication, but plays a minor role in regulating replication origin activity, gene expression and genome organization in B cells. Furthermore, we find that RIF1 functions in a complementary and non-epistatic manner with minichromosome maintenance (MCM) proteins to establish early RT signatures genome-wide and, specifically, to ensure the early replication of highly transcribed genes. These findings reveal additional layers of regulation within the B cell RT program, driven by the coordinated activity of RIF1 and MCM proteins.


Asunto(s)
Momento de Replicación del ADN , Replicación del ADN , Animales , Ratones , Cromatina/genética , Replicación del ADN/genética , Heterocromatina/genética , Mamíferos/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Origen de Réplica/genética , Proteínas de Unión a Telómeros/metabolismo
2.
Nat Struct Mol Biol ; 30(4): 539-550, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37024657

RESUMEN

Genome integrity requires replication to be completed before chromosome segregation. The DNA-replication checkpoint (DRC) contributes to this coordination by inhibiting CDK1, which delays mitotic onset. Under-replication of common fragile sites (CFSs), however, escapes surveillance, resulting in mitotic chromosome breaks. Here we asked whether loose DRC activation induced by modest stresses commonly used to destabilize CFSs could explain this leakage. We found that tightening DRC activation or CDK1 inhibition stabilizes CFSs in human cells. Repli-Seq and molecular combing analyses showed a burst of replication initiations implemented in mid S-phase across a subset of late-replicating sequences, including CFSs, while the bulk genome was unaffected. CFS rescue and extra-initiations required CDC6 and CDT1 availability in S-phase, implying that CDK1 inhibition permits mistimed origin licensing and firing. In addition to delaying mitotic onset, tight DRC activation therefore supports replication completion of late origin-poor domains at risk of under-replication, two complementary roles preserving genome stability.


Asunto(s)
Proteínas de Ciclo Celular , Replicación del ADN , Humanos , Fase S , Sitios Frágiles del Cromosoma/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN
3.
Nat Commun ; 13(1): 2329, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484127

RESUMEN

Mammalian genomes are replicated in a cell type-specific order and in coordination with transcription and chromatin organization. Currently, single-cell replication studies require individual processing of sorted cells, yielding a limited number (<100) of cells. Here, we develop Kronos scRT, a software for single-cell Replication Timing (scRT) analysis. Kronos scRT does not require a specific platform or cell sorting, which allows investigating large datasets obtained from asynchronous cells. By applying our tool to published data as well as droplet-based single-cell whole-genome sequencing data generated in this study, we exploit scRT from thousands of cells for different mouse and human cell lines. Our results demonstrate that although genomic regions are frequently replicated around their population average RT, replication can occur stochastically throughout S phase. Altogether, Kronos scRT allows fast and comprehensive investigations of the RT programme at the single-cell resolution for both homogeneous and heterogeneous cell populations.


Asunto(s)
Momento de Replicación del ADN , Análisis de la Célula Individual , Animales , División Celular , Mamíferos , Ratones , Fase S , Programas Informáticos
4.
Genome Res ; 32(4): 699-709, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35264448

RESUMEN

Eukaryotic genes are interrupted by introns that must be accurately spliced from mRNA precursors. With an average length of 25 nt, the more than 90,000 introns of Paramecium tetraurelia stand among the shortest introns reported in eukaryotes. The mechanisms specifying the correct recognition of these tiny introns remain poorly understood. Splicing can occur cotranscriptionally, and it has been proposed that chromatin structure might influence splice site recognition. To investigate the roles of nucleosome positioning in intron recognition, we determined the nucleosome occupancy along the P. tetraurelia genome. We show that P. tetraurelia displays a regular nucleosome array with a nucleosome repeat length of ∼151 bp, among the smallest periodicities reported. Our analysis has revealed that introns are frequently associated with inter-nucleosomal DNA, pointing to an evolutionary constraint favoring introns at the AT-rich nucleosome edge sequences. Using accurate splicing efficiency data from cells depleted for nonsense-mediated decay effectors, we show that introns located at the edge of nucleosomes display higher splicing efficiency than those at the center. However, multiple regression analysis indicates that the low GC content of introns, rather than nucleosome positioning, is associated with high splicing efficiency. Our data reveal a complex link between GC content, nucleosome positioning, and intron evolution in Paramecium.


Asunto(s)
Nucleosomas , Paramecium , Composición de Base , Exones , Intrones/genética , Nucleosomas/genética , Paramecium/genética , Empalme del ARN/genética
6.
Nat Commun ; 12(1): 2910, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006872

RESUMEN

Three-dimensional genome organisation and replication timing are known to be correlated, however, it remains unknown whether nuclear architecture overall plays an instructive role in the replication-timing programme and, if so, how. Here we demonstrate that RIF1 is a molecular hub that co-regulates both processes. Both nuclear organisation and replication timing depend upon the interaction between RIF1 and PP1. However, whereas nuclear architecture requires the full complement of RIF1 and its interaction with PP1, replication timing is not sensitive to RIF1 dosage. The role of RIF1 in replication timing also extends beyond its interaction with PP1. Availing of this separation-of-function approach, we have therefore identified in RIF1 dual function the molecular bases of the co-dependency of the replication-timing programme and nuclear architecture.


Asunto(s)
Núcleo Celular/genética , Momento de Replicación del ADN/genética , Células Madre Embrionarias de Ratones/metabolismo , Proteína Fosfatasa 1/genética , Proteínas de Unión a Telómeros/genética , Animales , Ciclo Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Expresión Génica , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Células Madre Embrionarias de Ratones/citología , Unión Proteica , Proteína Fosfatasa 1/metabolismo , Proteínas de Unión a Telómeros/metabolismo
7.
Proc Natl Acad Sci U S A ; 117(48): 30577-30588, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33199619

RESUMEN

Crossovers generated during the repair of programmed meiotic double-strand breaks must be tightly regulated to promote accurate homolog segregation without deleterious outcomes, such as aneuploidy. The Mlh1-Mlh3 (MutLγ) endonuclease complex is critical for crossover resolution, which involves mechanistically unclear interplay between MutLγ and Exo1 and polo kinase Cdc5. Using budding yeast to gain temporal and genetic traction on crossover regulation, we find that MutLγ constitutively interacts with Exo1. Upon commitment to crossover repair, MutLγ-Exo1 associate with recombination intermediates, followed by direct Cdc5 recruitment that triggers MutLγ crossover activity. We propose that Exo1 serves as a central coordinator in this molecular interplay, providing a defined order of interaction that prevents deleterious, premature activation of crossovers. MutLγ associates at a lower frequency near centromeres, indicating that spatial regulation across chromosomal regions reduces risky crossover events. Our data elucidate the temporal and spatial control surrounding a constitutive, potentially harmful, nuclease. We also reveal a critical, noncatalytic role for Exo1, through noncanonical interaction with polo kinase. These mechanisms regulating meiotic crossovers may be conserved across species.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Intercambio Genético , Exodesoxirribonucleasas/metabolismo , Meiosis/genética , Proteínas MutL/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Proteínas de Ciclo Celular/genética , Cromosomas Fúngicos , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Modelos Biológicos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Recombinación Genética
8.
Mol Cell ; 61(2): 260-73, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26725008

RESUMEN

DNA replication is temporally and spatially organized in all eukaryotes, yet the molecular control and biological function of the replication-timing program are unclear. Rif1 is required for normal genome-wide regulation of replication timing, but its molecular function is poorly understood. Here we show that in mouse embryonic stem cells, Rif1 coats late-replicating domains and, with Lamin B1, identifies most of the late-replicating genome. Rif1 is an essential determinant of replication timing of non-Lamin B1-bound late domains. We further demonstrate that Rif1 defines and restricts the interactions between replication-timing domains during the G1 phase, thereby revealing a function of Rif1 as organizer of nuclear architecture. Rif1 loss affects both number and replication-timing specificity of the interactions between replication-timing domains. In addition, during the S phase, Rif1 ensures that replication of interacting domains is temporally coordinated. In summary, our study identifies Rif1 as the molecular link between nuclear architecture and replication-timing establishment in mammals.


Asunto(s)
Núcleo Celular/metabolismo , Momento de Replicación del ADN , Proteínas de Unión a Telómeros/metabolismo , Animales , Proliferación Celular , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Islas de CpG/genética , Fase G1 , Eliminación de Gen , Regulación de la Expresión Génica , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas de Unión a Telómeros/química , Sitio de Iniciación de la Transcripción
9.
Nucleic Acids Res ; 42(14): 8914-27, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25034692

RESUMEN

Embryonic stem (ES) cells are in a dynamic equilibrium of distinct functional states, characterized by the heterogeneous expression of critical pluripotency factors and regulated by a spectrum of reversible histone modifications. Maintenance of this equilibrium is a hallmark of pluripotency. Here we find that the ADP-ribosyltransferases Parp1 and Parp7 play a critical role in safeguarding this state by occupying key pluripotency genes, notably Nanog, Pou5f1, Sox2, Stella, Tet1 and Zfp42, thereby protecting them from progressive epigenetic repression. In the absence of either Parp1 or Parp7, or upon inhibition of the ADP-ribosylating activity, ES cells exhibit a decrease in ground state pluripotency as they cannot maintain the typical heterogeneity characteristic of the metastable state. As a consequence, they display a higher propensity to differentiate. These findings place Parp1 and Parp7 at the genetic-epigenetic interface of pluripotency networks, fine-tuning the transcriptional heterogeneity and thereby determining the developmental plasticity of ES cells.


Asunto(s)
ADP Ribosa Transferasas/fisiología , Células Madre Embrionarias/enzimología , Células Madre Pluripotentes/enzimología , Poli(ADP-Ribosa) Polimerasas/fisiología , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , Animales , Diferenciación Celular , Línea Celular , Cromatina/química , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/citología , Metilación , Ratones , Mutación , Células Madre Pluripotentes/citología , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Factores de Transcripción/metabolismo , Trofoblastos/citología , Trofoblastos/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA