Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Nat Commun ; 12(1): 2879, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001879

RESUMEN

As whole-genome sequencing capacity becomes increasingly decentralized, there is a growing opportunity for collaboration and the sharing of surveillance data within and between countries to inform typhoid control policies. This vision requires free, community-driven tools that facilitate access to genomic data for public health on a global scale. Here we present the Pathogenwatch scheme for Salmonella enterica serovar Typhi (S. Typhi), a web application enabling the rapid identification of genomic markers of antimicrobial resistance (AMR) and contextualization with public genomic data. We show that the clustering of S. Typhi genomes in Pathogenwatch is comparable to established bioinformatics methods, and that genomic predictions of AMR are highly concordant with phenotypic susceptibility data. We demonstrate the public health utility of Pathogenwatch with examples selected from >4,300 public genomes available in the application. Pathogenwatch provides an intuitive entry point to monitor of the emergence and spread of S. Typhi high risk clones.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Salmonella typhi/efectos de los fármacos , Fiebre Tifoidea/prevención & control , Proteínas Bacterianas/genética , Genoma Bacteriano/genética , Genómica/métodos , Genotipo , Geografía , Humanos , Malaui , Proteínas de Transporte de Membrana/genética , Pruebas de Sensibilidad Microbiana/métodos , Mutación , Salmonella typhi/genética , Salmonella typhi/fisiología , Tanzanía , Fiebre Tifoidea/microbiología
2.
Genome Med ; 13(1): 61, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33875000

RESUMEN

BACKGROUND: Antimicrobial-resistant (AMR) Neisseria gonorrhoeae is an urgent threat to public health, as strains resistant to at least one of the two last-line antibiotics used in empiric therapy of gonorrhoea, ceftriaxone and azithromycin, have spread internationally. Whole genome sequencing (WGS) data can be used to identify new AMR clones and transmission networks and inform the development of point-of-care tests for antimicrobial susceptibility, novel antimicrobials and vaccines. Community-driven tools that provide an easy access to and analysis of genomic and epidemiological data is the way forward for public health surveillance. METHODS: Here we present a public health-focussed scheme for genomic epidemiology of N. gonorrhoeae at Pathogenwatch ( https://pathogen.watch/ngonorrhoeae ). An international advisory group of experts in epidemiology, public health, genetics and genomics of N. gonorrhoeae was convened to inform on the utility of current and future analytics in the platform. We implement backwards compatibility with MLST, NG-MAST and NG-STAR typing schemes as well as an exhaustive library of genetic AMR determinants linked to a genotypic prediction of resistance to eight antibiotics. A collection of over 12,000 N. gonorrhoeae genome sequences from public archives has been quality-checked, assembled and made public together with available metadata for contextualization. RESULTS: AMR prediction from genome data revealed specificity values over 99% for azithromycin, ciprofloxacin and ceftriaxone and sensitivity values around 99% for benzylpenicillin and tetracycline. A case study using the Pathogenwatch collection of N. gonorrhoeae public genomes showed the global expansion of an azithromycin-resistant lineage carrying a mosaic mtr over at least the last 10 years, emphasising the power of Pathogenwatch to explore and evaluate genomic epidemiology questions of public health concern. CONCLUSIONS: The N. gonorrhoeae scheme in Pathogenwatch provides customised bioinformatic pipelines guided by expert opinion that can be adapted to public health agencies and departments with little expertise in bioinformatics and lower-resourced settings with internet connection but limited computational infrastructure. The advisory group will assess and identify ongoing public health needs in the field of gonorrhoea, particularly regarding gonococcal AMR, in order to further enhance utility with modified or new analytic methods.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Genoma Bacteriano , Gonorrea/epidemiología , Gonorrea/microbiología , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/patogenicidad , Antibacterianos/farmacología , Células Clonales , Genotipo , Pruebas de Sensibilidad Microbiana , Fenotipo , Filogenia
3.
Bioinformatics ; 34(2): 292-293, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-29028899

RESUMEN

SUMMARY: Fully exploiting the wealth of data in current bacterial population genomics datasets requires synthesizing and integrating different types of analysis across millions of base pairs in hundreds or thousands of isolates. Current approaches often use static representations of phylogenetic, epidemiological, statistical and evolutionary analysis results that are difficult to relate to one another. Phandango is an interactive application running in a web browser allowing fast exploration of large-scale population genomics datasets combining the output from multiple genomic analysis methods in an intuitive and interactive manner. AVAILABILITY AND IMPLEMENTATION: Phandango is a web application freely available for use at www.phandango.net and includes a diverse collection of datasets as examples. Source code together with a detailed wiki page is available on GitHub at https://github.com/jameshadfield/phandango.

4.
Microb Genom ; 2(11): e000093, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-28348833

RESUMEN

Visualization is frequently used to aid our interpretation of complex datasets. Within microbial genomics, visualizing the relationships between multiple genomes as a tree provides a framework onto which associated data (geographical, temporal, phenotypic and epidemiological) are added to generate hypotheses and to explore the dynamics of the system under investigation. Selected static images are then used within publications to highlight the key findings to a wider audience. However, these images are a very inadequate way of exploring and interpreting the richness of the data. There is, therefore, a need for flexible, interactive software that presents the population genomic outputs and associated data in a user-friendly manner for a wide range of end users, from trained bioinformaticians to front-line epidemiologists and health workers. Here, we present Microreact, a web application for the easy visualization of datasets consisting of any combination of trees, geographical, temporal and associated metadata. Data files can be uploaded to Microreact directly via the web browser or by linking to their location (e.g. from Google Drive/Dropbox or via API), and an integrated visualization via trees, maps, timelines and tables provides interactive querying of the data. The visualization can be shared as a permanent web link among collaborators, or embedded within publications to enable readers to explore and download the data. Microreact can act as an end point for any tool or bioinformatic pipeline that ultimately generates a tree, and provides a simple, yet powerful, visualization method that will aid research and discovery and the open sharing of datasets.


Asunto(s)
Difusión de la Información/métodos , Técnicas Microbiológicas/métodos , Epidemiología Molecular/métodos , Filogeografía/métodos , Programas Informáticos , Genómica , Internet
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA