Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166684, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36878305

RESUMEN

Tenascin C (TNC) is an extracellular matrix (ECM) protein and a potential biomarker affecting progression of different tumor types, such as pancreatic and lung cancer. Alternative splicing variants of TNC are known to have an impact on interaction partners like other ECM proteins or cell surface receptors, including epidermal growth factor receptor (EGFR), leading to numerous and sometimes opposite roles of TNC in tumor cell dissemination and proliferation. Only little is known about the impact of TNC on biologic characteristics of lung cancer, such as invasion and metastatic potential. In the present study, we could link an increased expression of TNC in lung adenocarcinoma (LUAD) tissues with an unfavorable clinical outcome of patients. Furthermore, we investigated the functional role of TNC in LUAD. Immunohistochemical staining of TNC revealed a significant increase of TNC levels in primary tumours and metastases compared to normal lung tissue. Additionally, a significant correlation between TNC mRNA expression and EGFR copy number and protein expression levels has been determined. Moreover, inhibition of TNC in lung fibroblasts led to reduced invasiveness of LUAD cells harboring EGFR-activating mutations and to a shorter lamellipodia perimeter and a reduced lamellipodia area on the surface of LUAD cells. This study provides the evidence that TNC expression might be a biological relevant factor in LUAD progression in an EGFR-dependent manner and that it regulates tumor cell invasion by rearrangement of the actin cytoskeleton, especially affecting lamellipodia formation.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Matriz Extracelular/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Tenascina/genética , Tenascina/metabolismo
2.
Gut ; 72(3): 522-534, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35944927

RESUMEN

OBJECTIVE: Due to the limited number of modifiable risk factors, secondary prevention strategies based on early diagnosis represent the preferred route to improve the prognosis of pancreatic ductal adenocarcinoma (PDAC). Here, we provide a comparative morphogenetic analysis of PDAC precursors aiming at dissecting the process of carcinogenesis and tackling the heterogeneity of preinvasive lesions. DESIGN: Targeted and whole-genome low-coverage sequencing, genome-wide methylation and transcriptome analyses were applied on a final collective of 122 morphologically well-characterised low-grade and high-grade PDAC precursors, including intestinal and gastric intraductal papillary mucinous neoplasms (IPMN) and pancreatic intraepithelial neoplasias (PanIN). RESULTS: Epigenetic regulation of mucin genes determines the phenotype of PDAC precursors. PanIN and gastric IPMN display a ductal molecular profile and numerous similarly regulated pathways, including the Notch pathway, but can be distinguished by recurrent deletions and differential methylation and, in part, by the expression of mucin-like 3. Intestinal IPMN are clearly distinct lesions at the molecular level with a more instable genotype and are possibly related to a different ductal cell compartment. CONCLUSIONS: PDAC precursors with gastric and intestinal phenotype are heterogeneous in terms of morphology, genetic and epigenetic profile. This heterogeneity is related to a different cell identity and, possibly, to a different aetiology.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Intraductales Pancreáticas , Neoplasias Pancreáticas , Humanos , Epigénesis Genética , Neoplasias Intraductales Pancreáticas/genética , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Mucinas/metabolismo , Fenotipo , Neoplasias Pancreáticas
3.
Cells ; 11(5)2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35269426

RESUMEN

Nijmegen Breakage Syndrome (NBS) is a rare autosomal recessive genetic disorder caused by mutations within nibrin (NBN), a DNA damage repair protein. Hallmarks of NBS include chromosomal instability and clinical manifestations such as growth retardation, immunodeficiency, and progressive microcephaly. We employed induced pluripotent stem cell-derived cerebral organoids from two NBS patients to study the etiology of microcephaly. We show that NBS organoids carrying the homozygous 657del5 NBN mutation are significantly smaller with disrupted cyto-architecture. The organoids exhibit premature differentiation, and Neuronatin (NNAT) over-expression. Furthermore, pathways related to DNA damage response and cell cycle are differentially regulated compared to controls. After exposure to bleomycin, NBS organoids undergo delayed p53-mediated DNA damage response and aberrant trans-synaptic signaling, which ultimately leads to neuronal apoptosis. Our data provide insights into how mutations within NBN alters neurogenesis in NBS patients, thus providing a proof of concept that cerebral organoids are a valuable tool for studying DNA damage-related disorders.


Asunto(s)
Microcefalia , Síndrome de Nijmegen , Daño del ADN , Humanos , Microcefalia/genética , Síndrome de Nijmegen/genética , Síndrome de Nijmegen/metabolismo , Organoides/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
4.
Cancers (Basel) ; 14(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35159117

RESUMEN

BACKGROUND: Survival of patients with adenocarcinoma of the pancreas (PDAC) is poor and has remained almost unchanged over the past decades. The genomic landscape of PDAC has been characterized in recent years. The aim of this study was to identify a genetic profile as a possible predictor of prolonged survival in order to tailor therapy for PDAC patients. METHODS: Panel next generation sequencing (NGS) and immunohistochemistry (IHC) were performed on paraffin-embedded tumor tissues from curatively treated PDAC patients. Tumor slides were re-evaluated with a focus on the histomorphology. Patients were subgrouped according to short and long overall (<4 years/>4 years) and disease-free (<2 years/>2 years) survival. RESULTS: Thirty-nine patients were included in the study. Clinicopathological staging variables as well as the histomorphological subgroups were homogenously distributed between short- and long-term overall and disease-free survivors. In survival analysis, patients with the KRAS G12D mutation and patients with TP53 nonsense and splice-site mutations had a significantly worse overall survival (OS) and disease-free survival (DFS). Patients with long-term OS and DFS showed no KRAS G12D, no TP53 nonsense or splice-site mutations. Rare Q61H/D57N KRAS mutations were only found in long-term survivors. The allele frequency rate of KRAS and TP53 mutations in tumor cells was significantly higher in short-term disease-free survivors and overall survivors, respectively. CONCLUSIONS: NGS of PDAC revealed significant differences in survival outcome in a patient collective with homogenously distributed clinicopathological variables. Further multi-institutional studies are warranted to identify more long-term survivors to detect genetic differences suitable for targeted therapy.

5.
Sci Rep ; 11(1): 2901, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33536452

RESUMEN

Pancreatic cystic lesions (PCL) are increasingly diagnosed. Endoscopic ultrasound fine-needle aspiration (EUS-FNA) cytology is often used for diagnostic confirmation but can be inconclusive. In this study, the role of molecular analyses in the pre-operative diagnostics of PCL is evaluated. Targeted Next Generation Sequencing (NGS) applied on cytology smears was retrospectively evaluated in a cohort of 37 resected PCL. Usefulness of NGS on fresh cyst fluids was tested in a prospective cohort of patients with newly diagnosed PCL (n = 71). In the retrospective cohort, cytology plus NGS displayed higher sensitivity (94.1% vs. 87.1%) and specificity (100% vs. 50%) than cytology alone for the detection of mucinous neoplasms. In the prospective cohort, sensitivity and specificity of conventional cytology alone were 54.2% and 100% for the detection of mucinous neoplasia and 50.0% and 100% for the detection of high-grade dysplasia, respectively. Adding NGS, all lesions which underwent histopathologic verification (12/71, 17%) could be classified without false positive or false negative results regarding the detection of mucinous neoplasm so far. NGS analysis of cfDNA in PCL fluids is feasible and can increase diagnostic accuracy in the detection of mucinous neoplasms compared to cytology alone. However, algorithms for the detection of high-risk lesions need further improvement.


Asunto(s)
ADN Tumoral Circulante/análisis , Líquido Quístico/química , Quiste Pancreático/diagnóstico , Neoplasias Pancreáticas/diagnóstico , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , ADN Tumoral Circulante/genética , Biopsia por Aspiración con Aguja Fina Guiada por Ultrasonido Endoscópico , Estudios de Factibilidad , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Páncreas/diagnóstico por imagen , Páncreas/patología , Páncreas/cirugía , Quiste Pancreático/etiología , Quiste Pancreático/genética , Quiste Pancreático/cirugía , Neoplasias Pancreáticas/complicaciones , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/cirugía , Periodo Preoperatorio , Estudios Prospectivos , Estudios Retrospectivos , Sensibilidad y Especificidad , Adulto Joven
6.
BMC Med Genomics ; 14(1): 62, 2021 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-33639937

RESUMEN

BACKGROUND: Gene fusions represent promising targets for cancer therapy in lung cancer. Reliable detection of multiple gene fusions is therefore essential. METHODS: Five commercially available parallel sequencing assays were evaluated for their ability to detect gene fusions in eight cell lines and 18 FFPE tissue samples carrying a variety of known gene fusions. Four RNA-based assays and one DNA-based assay were compared; two were hybrid capture-based, TruSight Tumor 170 Assay (Illumina) and SureSelect XT HS Custom Panel (Agilent), and three were amplicon-based, Archer FusionPlex Lung Panel (ArcherDX), QIAseq RNAscan Custom Panel (Qiagen) and Oncomine Focus Assay (Thermo Fisher Scientific). RESULTS: The Illumina assay detected all tested fusions and showed the smallest number of false positive results. Both, the ArcherDX and Qiagen panels missed only one fusion event. Among the RNA-based assays, the Qiagen panel had the highest number of false positive events. The Oncomine Focus Assay (Thermo Fisher Scientific) was the least adequate assay for our purposes, seven fusions were not covered by the assay and two fusions were classified as uncertain. The DNA-based SureSelect XT HS Custom Panel (Agilent) missed three fusions and nine fusions were only called by one software version. Additionally, many false positive fusions were observed. CONCLUSIONS: In summary, especially RNA-based parallel sequencing approaches are potent tools for reliable detection of targetable gene fusions in clinical diagnostics.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Fusión Génica , Neoplasias Pulmonares/genética , Proteínas de Fusión Oncogénica/genética , Análisis de Secuencia de ARN
7.
Cancers (Basel) ; 13(1)2020 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-33375555

RESUMEN

Currently available serum biomarkers for pancreatobiliary cancers lack sensitivity and specificity and ultimate diagnosis still requires invasive procedures for histological confirmation. The detection of tumor-specific genetic aberrations with utilization of cell free DNA (cfDNA) is a less invasive approach than traditional tissue biopsies; however, it has not been implemented into clinical routine. In this study, we investigated bile as a liquid biopsy source in pancreatobiliary cancers and compared its potential as cell-free DNA source to plasma. Blood (n = 37) and bile (n = 21) samples were collected from patients affected by pancreatic ductal adenocarcinoma (PDAC) and extrahepatic cholangiocarcinoma (CCA) or with non-malignant biliary obstructions (blood n = 16; bile n = 21). Panel-based next generation sequencing (NGS) and digital droplet PCR (ddPCR) were applied for tumor mutation profiling. NGS results from matched tumor tissues (n = 29) served as comparison. Sequencing of cfDNA from bile resulted in detection of 96.2% of the pathogenic tumor mutations found in matched tissue samples. On the other hand, only 31.6% of pathogenic tumor mutations found in tissue could be detected in plasma. In a direct comparison, only half of the mutations detected in bile cfDNA were concordantly detected in plasma from the same patients. Panel NGS and ddPCR displayed comparable sensitivity. In conclusion, bile is a suitable source of cfDNA for the diagnosis of pancreatobiliary cancer and performs more reliably than plasma. Although primary diagnosis still requires histologic confirmation, bile-derived cfDNA could offer an alternative if tissue sampling is not feasible and might allow less invasive disease monitoring.

8.
Int J Mol Sci ; 21(24)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322422

RESUMEN

Human genomes contain about 100,000 LINE-1 (L1) retroelements, of which more than 100 are intact. L1s are normally tightly controlled by epigenetic mechanisms, which often fail in cancer. In bladder urothelial carcinoma (UC), particularly, L1s become DNA-hypomethylated, expressed and contribute to genomic instability and tumor growth. It is, however, unknown which individual L1s are activated. Following RNA-immunoprecipitation with a L1-specific antibody, third generation nanopore sequencing detected transcripts of 90 individual elements in the VM-Cub-1 UC line with high overall L1 expression. In total, 10 L1s accounted for >60% of the reads. Analysis of five specific L1s by RT-qPCR revealed generally increased expression in UC tissues and cell lines over normal controls, but variable expression among tumor cell lines from bladder, prostate and testicular cancer. Chromatin immunoprecipitation demonstrated active histone marks at L1 sequences with increased expression in VM-Cub-1, but not in a different UC cell line with low L1 expression. We conclude that many L1 elements are epigenetically activated in bladder cancer in a varied pattern. Our findings indicate that expression of individual L1s is highly heterogeneous between and among cancer types.


Asunto(s)
Elementos de Nucleótido Esparcido Largo/genética , Retroelementos/genética , Neoplasias Testiculares/genética , Anciano , Anciano de 80 o más Años , Inmunoprecipitación de Cromatina , Metilación de ADN/genética , Metilación de ADN/fisiología , Femenino , Histonas/metabolismo , Humanos , Inmunoprecipitación , Masculino , Persona de Mediana Edad , Secuenciación de Nanoporos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
9.
Sci Rep ; 9(1): 17365, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31758153

RESUMEN

The progression of colorectal cancer (CRC) is supposedly driven by cancer stem cells (CSC) which are able to self-renew and simultaneously fuel bulk tumour mass with highly proliferative and differentiated tumour cells. However, the CSC-phenotype in CRC is unstable and dependent on environmental cues. Fibroblast growth factor 2 (FGF2) is essential and necessary for the maintenance of self-renewal in adult and embryonic stem cells. Investigating its role in self-renewal in advanced CRC patient-derived organoids, we unveiled that FGF-receptor (FGFR) inhibition prevents organoid formation in very early expanding cells but induces cyst formation when applied to pre-established organoids. Comprehensive transcriptome analyses revealed that the induction of the transcription factor activator-protein-1 (AP-1) together with MAPK activation was most prominent after FGFR-inhibition. These effects resemble mechanisms of an acquired resistance against other described tyrosine kinase inhibitors such as EGF-receptor targeted therapies. Furthermore, we detected elevated expression levels of several self-renewal and stemness-associated genes in organoid cultures with active FGF2 signalling. The combined data assume that CSCs are a heterogeneous population while self-renewal is a common feature regulated by distinct but converging pathways. Finally, we highlight FGF2 signalling as one of numerous components of the complex regulation of stemness in cancer.


Asunto(s)
Autorrenovación de las Células/efectos de los fármacos , Neoplasias del Colon/patología , Factor 2 de Crecimiento de Fibroblastos/farmacología , Organoides/efectos de los fármacos , Anciano , Anciano de 80 o más Años , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/fisiología , Organoides/metabolismo , Organoides/patología , Cultivo Primario de Células , Transducción de Señal/efectos de los fármacos , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Células Tumorales Cultivadas
10.
Free Radic Biol Med ; 134: 419-428, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30703483

RESUMEN

Oxidative stress and reactivation of long interspersed element-1 (LINE-1) are coincidently observed in bladder cancer (BlCa), but the mechanistic connection between these two oncogenic phenomena is unknown. Previously, we reported increases in oxidative stress and LINE-1 protein (ORF1p) expression in human BlCa tissues. In this study, we measured 5-methylcytosine (5mC), 8-hydroxydeoxyguanosine (8-OHdG), 8-oxoguanosine DNA glycosylase-1 (OGG1), H3K9me3 and HP1α in bladder tissues obtained from BlCa patients. Reactivation of LINE-1 by reactive oxygen species (ROS) through chromatin remodeling was investigated in seven BlCa cell lines. We found that 5mC was decreased, but 8-OHdG, H3K9me3 and HP1α levels were increased in BlCa tissues relative to the adjacent non-cancerous tissues. OGG1, H3K9me3 and HP1α expression in BlCa tissues were positively correlated with 8-OHdG levels. Following H2O2 treatment, LINE-1 transcript expression was increased in VM-CUB-1 and TCCSUP, whereas AluYa5 and AluYb8 transcripts were increased in BFTC905 cells. Basal expression of LINE-1 ORF1p varied among BlCa cell lines from none to very high. H2O2 treatment clearly increased expression of ORF1p in VM-CUB-1, TCCSUP and BFTC905. Chromatin immunoprecipitation experiments revealed that 5'-LINE-1 promoters became further enriched in H3K4me3 and H3K18ac in VM-CUB-1 and BFTC905 cells treated with H2O2. In contrast, 5'-LINE-1 promoters became more enriched in H3K9me3 and H3K27me3 in UM-UC-3 treated with H2O2. In summary, decreased 5mC, but increased 8-OHdG, H3K9me3 and HP1α expression were demonstrated in human BlCa tissues, indicating global DNA hypomethylation, increased oxidative stress and altered histone methylation in BlCa. Chromatin structures were profoundly changed in BlCa cells exposed to ROS, but expression of LINE-1 transcript and protein were at most modestly increased. ROS enhanced expression of full-length LINE-1 elements only in cell lines with pre-existing activation, which was paralleled by increased formation of active chromatin at LINE-1 promoter loci.


Asunto(s)
Cromatina/metabolismo , Metilación de ADN , Epigénesis Genética , Elementos de Nucleótido Esparcido Largo/genética , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Neoplasias de la Vejiga Urinaria/patología , 8-Hidroxi-2'-Desoxicoguanosina/análogos & derivados , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Anciano , Estudios de Casos y Controles , Cromatina/genética , Homólogo de la Proteína Chromobox 5 , ADN Glicosilasas/metabolismo , Femenino , Humanos , Masculino , Regiones Promotoras Genéticas , Células Tumorales Cultivadas , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo
11.
Front Microbiol ; 9: 2088, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30233553

RESUMEN

The most common mutational signature in urothelial carcinoma (UC), the most common type of urinary bladder cancer is assumed to be caused by the misdirected activity of APOBEC3 (A3) cytidine deaminases, especially A3A or A3B, which are known to normally restrict the propagation of exogenous viruses and endogenous retroelements such as LINE-1 (L1). The involvement of A3 proteins in urothelial carcinogenesis is unexpected because, to date, UC is thought to be caused by chemical carcinogens rather than viral activity. Therefore, we explored the relationship between A3 expression and L1 activity, which is generally upregulated in UC. We found that UC cell lines highly express A3B and in some cases A3G, but not A3A, and exhibit corresponding cytidine deamination activity in vitro. While we observed evidence suggesting that L1 expression has a weak positive effect on A3B and A3G expression and A3B promoter activity, neither efficient siRNA-mediated knockdown nor overexpression of functional L1 elements affected catalytic activity of A3 proteins consistently. However, L1 knockdown diminished proliferation of a UC cell line exhibiting robust endogenous L1 expression, but had little impact on a cell line with low L1 expression levels. Our results indicate that UC cells express A3B at levels exceeding A3A levels by far, making A3B the prime candidate for causing genomic mutations. Our data provide evidence that L1 activation constitutes only a minor and negligible factor involved in induction or upregulation of endogenous A3 expression in UC.

12.
Cancer Genomics Proteomics ; 15(2): 143-151, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29496693

RESUMEN

BACKGROUND/AIM: Reactivation of long interspersed nuclear element-1 (LINE-1) and oxidative stress are suggested to have oncogenic potential to drive tumorigenesis and cancer progression. We previously demonstrated that reactive oxygen species (ROS) caused hypomethylation of LINE-1 elements in bladder cancer cells. In this study, we investigated the expression of LINE-1-encoded protein (ORF1p) and oxidative stress marker 4-hydroxynonenal (4-HNE) in human bladder cancer tissues, as well as induction of ORF1p expression by ROS in bladder cancer cell lines. MATERIALS AND METHODS: Thirty-six cancerous and 15 non-cancerous adjacent tissues were immunohistochemically stained for ORF1p and 4-HNE. ORF1p expression and cell migration were determined in bladder cancer cells exposed to H2O2 Results: ORF1p and 4-HNE expression was higher in cancerous than non-cancerous tissues. Elevated ORF1p expression was associated with increased 4-HNE expression and with advanced tumors. H2O2 provoked oxidative stress and up-regulated ORF1p expression in VM-CUB-1 compared to the untreated control, and to a lesser degree in TCCSUP. H2O2 exposure enhanced cell migration in UM-UC-3, TCCSUP and VM-CUB-1. CONCLUSION: Elevated ORF1p expression is associated with tumor progression. ROS experimentally induce ORF1p expression and promote migration in bladder cancer cells.


Asunto(s)
Elementos de Nucleótido Esparcido Largo , Proteínas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Anciano , Movimiento Celular/fisiología , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Proteínas/genética , Regulación hacia Arriba , Neoplasias de la Vejiga Urinaria/genética
13.
Methods Mol Biol ; 1655: 97-107, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28889380

RESUMEN

Members of the APOBEC3 (A3) family of enzymes were shown to act in an oncogenic manner in several cancer types. Immunodetection of APOBEC3A (A3A), APOBEC3B (A3B), and APOBEC3G (A3G) proteins is particularly challenging due to the large sequence homology of these proteins and limited availability of antibodies. Here we combine independent immunoblotting with an in vitro activity assay technique, to detect and categorize specific A3s expressed in urothelial bladder cancer and other cancer cells.


Asunto(s)
Citosina Desaminasa/metabolismo , Neoplasias Urológicas/metabolismo , Desaminasas APOBEC , Catálisis , Línea Celular , Citidina Desaminasa , Citosina Desaminasa/genética , ADN/metabolismo , Activación Enzimática , Humanos , Immunoblotting/métodos , Familia de Multigenes , Mutación , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias Urológicas/diagnóstico , Neoplasias Urológicas/genética
14.
Epigenomics ; 8(10): 1415-1428, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27624974

RESUMEN

DNA methylation alterations are common in urothelial carcinoma, a prevalent cancer worldwide caused predominantly by chemical carcinogens. Recent studies have proposed sets of hypermethylated genes as promising diagnostic and prognostic biomarkers from urine or tissue samples, which require validation. Other studies have revealed intriguing links between specific carcinogens and DNA methylation alterations in cancer tissues or blood that might clarify carcinogenesis mechanisms and aid prevention. Like DNA methylation alterations, mutations in chromatin regulators are frequent, underlining the importance of epigenetic changes. However, the relations between the two changes and their functions in urothelial carcinogenesis remain unclear. Transcription factor genes with altered methylation deserve particular interest. Elucidating the functional impact of methylation changes is a prerequisite for their therapeutic targeting.


Asunto(s)
Carcinoma/genética , Metilación de ADN , Neoplasias Urológicas/genética , Biomarcadores de Tumor/genética , Carcinoma/terapia , Humanos , Neoplasias Urológicas/terapia
15.
Prostate ; 75(16): 1958-71, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26384005

RESUMEN

BACKGROUND: Increased expression of human endogenous retroviruses, especially HERV-K(HML-2) proviruses, has recently been associated with prostate carcinoma progression. In particular, a HML-2 locus in chromosome 22q11.23 (H22q) is upregulated in many cases. We therefore aimed at delineating the extent and repertoire of HML-2 transcription in prostate cancer tissues and cell lines and to define the transcription pattern and biological effects of H22q. METHODS: Sanger and high throughput amplicon sequencing was used to define the repertoire of expressed HML-2 in a selected set of samples. qRT-PCR was used to quantify expression of selected proviruses in an extended set of prostate cancer tissues. Transcription factor binding sites (TFBS) were compared bioinformatically using the Transfac database. Expression of H22q was further characterized by siRNA-mediated knockdown, 5' RACE mapping of transcriptional start sites (TSS) and identification of splice sites. Functional effects of H22q knockdown were investigated by viability and apoptosis assays. RESULTS: In addition to H22q, a limited number of other proviruses were found expressed by sequencing. Of these, provirus ERVK-5 and to a lesser degree ERVK-15 were frequently upregulated in prostate cancer. In contrast, expression of ERVK-24, predominant in germ cell tumors, was not detectable in prostatic tissues. While HML-2 LTRs contain binding sites for the androgen receptor and cofactors, no consistent differences in transcription factor binding sites were found between expressed and non-expressed proviruses. The H22q locus contains two 5'-LTRs of which the upstream LTR is predominantly used in prostatic cells, with an imprecise TSS. Splicing of H22q transcripts is complex, generating, among others, a transcript with an Np9-like ORF. Knockdown of H22q did not significantly affect proliferation or apoptosis of prostate cancer cells. CONCLUSIONS: Our findings further underline that HML-2 expression is commonly highly tissue-specific. In prostate cancer, a limited number of loci become activated, especially H22q and ERVK-5. As expressed and non-expressed proviruses do not differ significantly in TFBS, tissue- and tumor-specific expression may be governed primarily by chromatin context. Overexpression of HML-2 H22q is more likely consequence than cause of prostate cancer progression.


Asunto(s)
Adenocarcinoma/metabolismo , Neoplasias de la Próstata/metabolismo , Proteínas Virales/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patología , Apoptosis , Supervivencia Celular , Progresión de la Enfermedad , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología
16.
Clin Epigenetics ; 7: 17, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25798207

RESUMEN

BACKGROUND: Hypomethylation of long interspersed element (LINE)-1 has been observed in tumorigenesis when using degenerate assays, which provide an average across all repeats. However, it is unknown whether individual LINE-1 loci or different CpGs within one specific LINE-1 promoter are equally affected by methylation changes. Conceivably, studying methylation changes at specific LINE-1 may be more informative than global assays for cancer diagnostics. Therefore, with the aim of mapping methylation at individual LINE-1 loci at single-CpG resolution and exploring the diagnostic potential of individual LINE-1 locus methylation, we analyzed methylation at 11 loci by pyrosequencing, next-generation bisulfite sequencing as well as global LINE-1 methylation in bladder, colon, pancreas, prostate, and stomach cancers compared to paired normal tissues and in blood samples from some of the patients compared to healthy donors. RESULTS: Most (72/80) tumor samples harbored significant methylation changes at at least one locus. Notably, our data revealed not only the expected hypomethylation but also hypermethylation at some loci. Specific CpGs within the LINE-1 consensus sequence appeared preferentially hypomethylated suggesting that these could act as seeds for hypomethylation. In silico analysis revealed that these CpG sites more likely faced the histones in the nucleosome. Multivariate logistic regression analysis did not reveal a significant clinical advantage of locus-specific methylation markers over global methylation markers in distinguishing tumors from normal tissues. CONCLUSIONS: Methylation changes at individual LINE-1 loci are heterogeneous, whereas specific CpGs within the consensus sequence appear to be more prone to hypomethylation. With a broader selection of loci, locus-specific LINE-1 methylation could become a tool for tumor detection.

17.
Cancer Biomark ; 14(5): 295-302, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25171471

RESUMEN

Urinary DNA is increasingly gaining importance in diagnosis of urological malignancies. Especially cell-free DNA originating from apoptotic and necrotic cells of the early tumor could become a key target for early stage tumor diagnosis. Aberrant DNA methylation forms tumor cell characteristic epigenetic profiles which are covalently established before any tumor related aberration at transcriptional or protein level has occurred. In addition, these epigenetic signatures are alterably adapted to and accompanying the individual stages of multistep, progressive tumorigenesis. Hence, they seem very promising for diagnosis as well as for monitoring the patient's follow-up care and even for decisions regarding personalized therapeutic options. The essential prerequisite at this approach will be a reliable methodological handling of the biological material of interest. In this study we present detailed analyses of LINE-1 DNA methylation profiles and demonstrate the sensitive detection of LINE-1 DNA methylation differences as well as between cancer patients and healthy individuals, between urinary cellular and cell-free DNA. In addition, we show methylome differences between both DNA fractions from a healthy individual and bladder cancer patients. In conclusion, we demonstrate here the unrestricted amenability of urinary cell-free DNA for both, a detailed characterization of a distinct DNA methylation alteration and its sensitive detection and a comprehensive global, array-based screening for DNA methylation differences.


Asunto(s)
Sistema Libre de Células/fisiología , Metilación de ADN/genética , ADN/genética , Epigénesis Genética/genética , Vejiga Urinaria/fisiología , Estudios de Casos y Controles , Humanos , Neoplasias de la Vejiga Urinaria/genética
18.
Clin Cancer Res ; 20(8): 2169-81, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24737792

RESUMEN

PURPOSE: Available tools for prostate cancer diagnosis and prognosis are suboptimal and novel biomarkers are urgently needed. Here, we investigated the regulation and biomarker potential of the GABRE∼miR-452∼miR-224 genomic locus. EXPERIMENTAL DESIGN: GABRE/miR-452/miR-224 transcriptional expression was quantified in 80 nonmalignant and 281 prostate cancer tissue samples. GABRE∼miR-452∼miR-224 promoter methylation was determined by methylation-specific qPCR (MethyLight) in 35 nonmalignant, 293 prostate cancer [radical prostatectomy (RP) cohort 1] and 198 prostate cancer tissue samples (RP cohort 2). Diagnostic/prognostic biomarker potential of GABRE∼miR-452∼miR-224 methylation was evaluated by ROC, Kaplan-Meier, uni- and multivariate Cox regression analyses. Functional roles of miR-224 and miR-452 were investigated in PC3 and DU145 cells by viability, migration, and invasion assays and gene-set enrichment analysis (GSEA) of posttransfection transcriptional profiling data. RESULTS: GABRE∼miR-452∼miR-224 was significantly downregulated in prostate cancer compared with nonmalignant prostate tissue and had highly cancer-specific aberrant promoter hypermethylation (AUC = 0.98). Functional studies and GSEA suggested that miR-224 and miR-452 inhibit proliferation, migration, and invasion of PC3 and DU145 cells by direct/indirect regulation of pathways related to the cell cycle and cellular adhesion and motility. Finally, in uni- and multivariate analyses, high GABRE∼miR-452∼miR-224 promoter methylation was significantly associated with biochemical recurrence in RP cohort 1, which was successfully validated in RP cohort 2. CONCLUSION: The GABRE∼miR-452∼miR-224 locus is downregulated and hypermethylated in prostate cancer and is a new promising epigenetic candidate biomarker for prostate cancer diagnosis and prognosis. Tumor-suppressive functions of the intronic miR-224 and miR-452 were demonstrated in two prostate cancer cell lines, suggesting that epigenetic silencing of GABRE∼miR-452∼miR-224 may be selected for in prostate cancer.


Asunto(s)
Metilación de ADN , MicroARNs/genética , Regiones Promotoras Genéticas/genética , Neoplasias de la Próstata/genética , Receptores de GABA-A/genética , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Línea Celular , Línea Celular Tumoral , Movimiento Celular/genética , Supervivencia Celular/genética , Estudios de Cohortes , Islas de CpG/genética , Perfilación de la Expresión Génica/estadística & datos numéricos , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Análisis Multivariante , Recurrencia Local de Neoplasia , Pronóstico , Modelos de Riesgos Proporcionales , Prostatectomía/métodos , Neoplasias de la Próstata/cirugía
19.
Epigenetics ; 9(5): 704-17, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24513574

RESUMEN

Multiple epigenetic alterations contribute to prostate cancer progression by deregulating gene expression. Epigenetic mechanisms, especially differential DNA methylation at imprinting control regions (termed DMRs), normally ensure the exclusive expression of imprinted genes from one specific parental allele. We therefore wondered to which extent imprinted genes become deregulated in prostate cancer and, if so, whether deregulation is due to altered DNA methylation at DMRs. Therefore, we selected presumptive deregulated imprinted genes from a previously conducted in silico analysis and from the literature and analyzed their expression in prostate cancer tissues by qRT-PCR. We found significantly diminished expression of PLAGL1/ZAC1, MEG3, NDN, CDKN1C, IGF2, and H19, while LIT1 was significantly overexpressed. The PPP1R9A gene, which is imprinted in selected tissues only, was strongly overexpressed, but was expressed biallelically in benign and cancerous prostatic tissues. Expression of many of these genes was strongly correlated, suggesting co-regulation, as in an imprinted gene network (IGN) reported in mice. Deregulation of the network genes also correlated with EZH2 and HOXC6 overexpression. Pyrosequencing analysis of all relevant DMRs revealed generally stable DNA methylation between benign and cancerous prostatic tissues, but frequent hypo- and hyper-methylation was observed at the H19 DMR in both benign and cancerous tissues. Re-expression of the ZAC1 transcription factor induced H19, CDKN1C and IGF2, supporting its function as a nodal regulator of the IGN. Our results indicate that a group of imprinted genes are coordinately deregulated in prostate cancers, independently of DNA methylation changes.


Asunto(s)
Redes Reguladoras de Genes , Neoplasias de la Próstata/genética , Andrógenos/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Metilación de ADN , Proteína Potenciadora del Homólogo Zeste 2 , Epigénesis Genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Próstata/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulador Transcripcional ERG , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
20.
Front Oncol ; 3: 255, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24133654

RESUMEN

Changes in DNA methylation frequently accompany cancer development. One prominent change is an apparently genome-wide decrease in methylcytosine that is often ascribed to DNA hypomethylation at retroelements comprising nearly half the genome. DNA hypomethylation may allow reactivation of retroelements, enabling retrotransposition, and causing gene expression disturbances favoring tumor development. However, neither the extent of hypomethylation nor of retroelement reactivation are precisely known. We therefore assessed DNA methylation and expression of three major classes of retroelements (LINE-1, HERV-K, and AluY) in human urinary bladder cancer tissues and cell lines by pyrosequencing and quantitative reverse transcription-polymerase chain reaction, respectively. We found substantial global LINE-1 DNA hypomethylation in bladder cancer going along with a shift toward full-length LINE-1 expression. Thus, pronounced differences in LINE-1 expression were observed, which may be promoted, among others, by LINE-1 hypomethylation. Significant DNA hypomethylation was found at the HERV-K_22q11.23 proviral long terminal repeat (LTR) in bladder cancer tissues but without reactivation of its expression. DNA methylation of HERVK17, essentially absent from normal urothelial cells, was elevated in cell lines from invasive bladder cancers. Accordingly, the faint expression of HERVK17 in normal urothelial cells disappeared in such cancer cell lines. Of 16 additional HERV-Ks, expression of 7 could be detected in the bladder, albeit generally at low levels. Unlike in prostate cancers, none of these showed significant expression changes in bladder cancer. In contrast, expression of the AluYb8 but not of the AluYa5 family was significantly increased in bladder cancer tissues. Collectively, our findings demonstrate a remarkable specificity of changes in expression and DNA methylation of retroelements in bladder cancer with a significantly different pattern from that in prostate cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA