Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Heliyon ; 10(11): e31922, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38947443

RESUMEN

Mentha pulegium L., a plant widely embraced for its therapeutic properties by populations worldwide, including Morocco, has long been recognized for its potential in treating various ailments. This study aims to comprehensively evaluate the antioxidant, anti-inflammatory, and dermatoprotective properties of essential oil derived from M. pulegium, and thyme honey as well as their combined effects. To unravel the chemical composition, a rigorous GC-MS analysis was conducted. Subsequently, we examined their antioxidant potential through three distinct assays: DPPH●, hydrogen peroxide assay, and xanthine oxidase assay. The anti-inflammatory properties were scrutinized through both in vitro and in vivo experiments. Simultaneously, the dermatoprotective efficacy was investigated in vitro by evaluating tyrosinase inhibition. Our findings revealed that pulegone constitutes the predominant compound in M. pulegium essential oil (MPEO), constituting a remarkable 74.82 % of the composition. Significantly, when the essential oil was combined with thym honey, it exhibited superior anti-inflammatory and dermatoprotective effects across all in vivo and in vitro tests. Moreover, our in silico molecular docking analysis hinted at the potential role of cyclohexanone, 3-methyl, an element found in the MPEO, in contributing to the observed outcomes. While this study has unveiled promising results regarding the combined in vitro, in vivo and in silico biological activities of the essential oil and honey, it is imperative to delve further into the underlying mechanisms through additional experimentation and alternative experimental methods. Understanding these mechanisms in greater detail will not only enhance our comprehension of the therapeutic potential but also pave the way for the development of innovative treatments and applications rooted in the synergy of these natural compounds. Furthermore, it would be advantageous to test different possible combinations using experimental design model. Moreover, it would be better to test the effect of single compounds of MPEO to clearly elucidate their efficiency. MPEO alone or combined with thyme honey may be a useful for the development of novel biopharmaceuticals.

2.
Int J Microbiol ; 2024: 2148676, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962395

RESUMEN

Boza, a cereal-based beverage popular in southeast Europe, is fortified with probiotics and is believed to positively impact the composition of the gut microflora. This investigation focused on fermented cereal-based beverage boza to identify strains of probiotic Lactobacillus spp. capable of inhibiting carbohydrate-hydrolysing enzymes α-glucosidase (AG) and α-amylase (AA). The isolated bacterial strains underwent a comprehensive assessment, including biochemical, molecular, and probiotic trait analyses such as tolerance survivability, adhesion, safety, and health-promoting attributes. We evaluated the inhibitory potential of the supernatant, cell lysate, and intact cells of Lactobacillus spp. Molecular analysis has revealed that isolates RAMULAB30 and RAMULAB29 exhibit a significant genetic similarity (>97%) to Lacticaseibacillus paracasei and Limosilactobacillus fermentum, respectively. These findings are documented in the NCBI database. They exhibited significant resistance to gastrointestinal and intestinal fluids, also indicating their potential for adhesion. Additionally, the isolates showed a significant antibacterial activity, particularly against Micrococcus luteus. They showed resistance to vancomycin and methicillin antibiotics but were more susceptible to streptomycin and ampicillin. Furthermore, the strains demonstrated antioxidant properties. To ensure their safety, a haemolytic assay was conducted despite their general recognition as safe (GRAS) status. The study primarily aimed to evaluate the inhibitory effects of the extract on enzymes AG and AA. Bacterial isolates demonstrated a significant inhibitory activity against both enzyme AG (32%-67% inhibition) and enzyme AA (18%-46% inhibition) in different forms, including supernatant (CS), lysed extract (CE), and intact cell (IC). These findings underscore the potential of bacterial isolates to inhibit the enzyme activity effectively. Furthermore, the L. fermentum RAMULAB29 and L. paracasei RAMULAB30 strains exhibit remarkable antidiabetic potential. Food products incorporating these strains have promising prospects as nutraceuticals, providing improved health benefits.

3.
Biomed Pharmacother ; : 116886, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38945700

RESUMEN

Colorectal cancer (CRC) is one of the most significant forms of human cancer. It is characterized by its heterogeneity because several molecular factors are involved in contiguity and can link it to others without having a linear correlation. Among the factors influencing tumor transformation in CRC, transforming growth factor-beta (TGF-ß) plays a key promoter role. This factor is associated with human colorectal tumors with a very high prognosis: it increases the survival, invasion, and metastasis of CRC cells, thus functioning as an oncogene. The inhibition of this factor can constitute a major therapeutic route for CRC treatment. Various chemical drugs including synthetic molecules and biotherapies have been developed as TGF-ß inhibitors. Moreover, the scientific community has recently shown a major interest in screening natural drugs inhibiting TGF-ß in CRC. In this context, we carried out this review article using computerized databases, such as PubMed, Google Scholar, Springer Link, Science Direct, Cochrane Library, Embase, Web of Science, and Scopus, to highlight the molecular mechanism of TGF-ß in CRC induction and progression and current advances in the pharmacodynamic effects of natural bioactive substances targeting TGF-ß in CRC.

4.
Health Sci Rep ; 7(6): e2120, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38831777

RESUMEN

Background and Aims: Natural products are widely used in the pharmaceutical and cosmetics industries due to their high-value bioactive compounds, which make for "greener" and more environmentally friendly ingredients. These natural compounds are also considered a safer alternative to antibiotics, which may result in antibiotic resistance as well as unfavorable side effects. The development of cosmeceuticals, which combine the cosmetic and pharmaceutical fields to create skincare products with therapeutic value, has increased the demand for unique natural resources. The objective of this review is to discuss the biological properties of extracts derived from larvae of the black soldier fly (BSF; Hermetia illucens), the appropriate extraction methods, and the potential of this insect as a novel active ingredient in the formulation of new cosmeceutical products. This review also addresses the biological actions of compounds originating from the BSF, and the possible association between the diets of BSF larvae and their subsequent bioactive composition. Methods: A literature search was conducted using PubMed and Google Scholar to identify and evaluate the various biological properties of the BSF. Results: One such natural resource that may be useful in the cosmeceutical field is the BSF, a versatile insect with numerous potential applications due to its nutrient content and scavenging behavior. Previous research has also shown that the BSF has several biological properties, including antimicrobial, antioxidant, anti-inflammatory, and wound healing effects. Conclusion: Given the range of biological activities and metabolites possessed by the BSF, this insect may have the cosmeceutical potential to treat a number of skin pathologies.

5.
Heliyon ; 10(9): e29718, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38694079

RESUMEN

Diabetes is a complex disease that affects a large percentage of the world's population, and it is associated with several risk factors. Self-management poses a significant challenge, but natural sources have shown great potential in providing effective glucose reducing solutions. Flavonoids, a class of bioactive substances found in different natural sources including medicinal plants, have emerged as promising candidates in this regard. Indeed, several flavonoids, including apigenin, arbutin, catechins, and cyanidin, have demonstrated remarkable anti-diabetic properties. The clinical effectiveness of these flavonoids is linked to their potential to decrease blood glucose concentration and increase insulin concentration. Thus, the regulation of certain metabolic pathways such as glycolysis and neoglycogenesis has also been demonstrated. In vitro and in vivo investigations revealed different mechanisms of action related to flavonoid compounds at subcellular, cellular, and molecular levels. The main actions reside in the activation of glycolytic signaling pathways and the inhibition of signaling that promotes glucose synthesis and storage. In this review, we highlight the clinical efficiency of natural flavonoids as well as the molecular mechanisms underlying this effectiveness.

6.
J Cheminform ; 16(1): 62, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807196

RESUMEN

In drug discovery, virtual screening is crucial for identifying potential hit compounds. This study aims to present a novel pipeline that employs machine learning models that amalgamates various conventional screening methods. A diverse array of protein targets was selected, and their corresponding datasets were subjected to active/decoy distribution analysis prior to scoring using four distinct methods: QSAR, Pharmacophore, docking, and 2D shape similarity, which were ultimately integrated into a single consensus score. The fine-tuned machine learning models were ranked using the novel formula "w_new", consensus scores were calculated, and an enrichment study was performed for each target. Distinctively, consensus scoring outperformed other methods in specific protein targets such as PPARG and DPP4, achieving AUC values of 0.90 and 0.84, respectively. Remarkably, this approach consistently prioritized compounds with higher experimental PIC50 values compared to all other screening methodologies. Moreover, the models demonstrated a range of moderate to high performance in terms of R2 values during external validation. In conclusion, this novel workflow consistently delivered superior results, emphasizing the significance of a holistic approach in drug discovery, where both quantitative metrics and active enrichment play pivotal roles in identifying the best virtual screening methodology.Scientific contributionWe presented a novel consensus scoring workflow in virtual screening, merging diverse methods for enhanced compound selection. We also introduced 'w_new', a groundbreaking metric that intricately refines machine learning model rankings by weighing various model-specific parameters, revolutionizing their efficacy in drug discovery in addition to other domains.

7.
Food Chem X ; 22: 101453, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38803670

RESUMEN

This study aimed to explore the possibility of enriching cold-pressed Virginia (VIO) and Valencia (VAO) peanut oils with omega-3 fatty acids (FAs) from walnut oil (WO) to produce blended oils with improved nutritional value. The oxidative stability of pure and blended oils was examined under accelerated conditions (60 °C) for 28 days. The FA and tocopherol profiles, as well as nutritional quality indices, were determined. As the proportion of WO increased in the blends, the levels of linoleic and α-linolenic essential FAs increased, while oleic acid content decreased. Furthermore, γ- and δ-tocopherol levels rose, whereas α-tocopherol declined. Among the studied blends, VIO:WO blends, especially at a (70:30) ratio, were nutritionally favorable with a balanced FA profile. During storage, notable changes were observed in tocopherol levels, along with subtle alterations in the FA profile of the blended oils. Hence, the oxidative stability of pure VIO and VAO decreased with WO incorporation.

8.
Sci Rep ; 14(1): 9195, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649707

RESUMEN

The development of novel antioxidant compounds with high efficacy and low toxicity is of utmost importance in the medicine and food industries. Moreover, with increasing concerns about the safety of synthetic components, scientists are beginning to search for natural sources of antioxidants, especially essential oils (EOs). The combination of EOs may produce a higher scavenging profile than a single oil due to better chemical diversity in the mixture. Therefore, this exploratory study aims to assess the antioxidant activity of three EOs extracted from Cymbopogon flexuosus, Carum carvi, and Acorus calamus in individual and combined forms using the augmented-simplex design methodology. The in vitro antioxidant assays were performed using DPPH and ABTS radical scavenging approaches. The results of the Chromatography Gas-Mass spectrometry (CG-MS) characterization showed that citral (29.62%) and niral (27.32%) are the main components for C. flexuosus, while D-carvone (62.09%) and D-limonene (29.58%) are the most dominant substances in C. carvi. By contrast, ß-asarone (69.11%) was identified as the principal component of A. calamus (30.2%). The individual EO exhibits variable scavenging activities against ABTS and DPPH radicals. These effects were enhanced through the mixture of the three EOs. The optimal antioxidant formulation consisted of 20% C. flexuosus, 53% C. carvi, and 27% A. calamus for DPPHIC50. Whereas 17% C. flexuosus, 43% C. carvi, and 40% A. calamus is the best combination leading to the highest scavenging activity against ABTS radical. These findings suggest a new research avenue for EOs combinations to be developed as novel natural formulations useful in food and biopharmaceutical products.


Asunto(s)
Acorus , Antioxidantes , Carum , Cymbopogon , Aceites Volátiles , Extractos Vegetales , Cymbopogon/química , Aceites Volátiles/farmacología , Aceites Volátiles/química , Antioxidantes/farmacología , Antioxidantes/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Acorus/química , Carum/química , Cromatografía de Gases y Espectrometría de Masas , Compuestos de Bifenilo/antagonistas & inhibidores , Compuestos de Bifenilo/química , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología
9.
Heliyon ; 10(8): e29490, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38655301

RESUMEN

Diversity and homeostasis of gut bacterial composition is highly associated with the pathogenesis of insulin dysfunction and type 1 diabetes melittus (T1D), hence emerged in parallel with the activation of autoimmunity. We aimed to study the bioactive potential of essential oil from Zanthoxylum myriacanthum var. pubescens Huang (Maqian) through computational approaches. Twelve chemical constituents derived from Maqian essential oil were docked with selected proteins (i.e., 3pig, 1kho, 7dmq, 4m4d, 2z65, 4glp, and 3fxi) in which are involved in gut microbiota modulation in T1D. Subsequently, the prediction of bioavailability properties of the small molecules were evaluated. Among all chemical constituents, the post-docking interaction analysis demonstrated that α-phellandrene exhibits the strongest binding affinity and induces gut microbiota modulation with ß-fructofuranosidase from Bifidobacterium longum. The current result revealed the potential of 3-Carene and α-Pinene in inducing specific changes in gut microbiota downregulating Clostridium perfringens and quenching Leptotrichia shahii respectively. ß-Pinene possess exceptionally strong binding affinity that effectively disrupt the interaction between lipopolysaccharide and its cognate receptors, while α-Phellandrene was exhibited the uppermost binding affinity with TLR4/MD2 and could likely target TLR4 stimulating lipopolysaccharide. Our results are the first to report on the gut microbiota modulation effects of α-Phellandrene and ß-Phellandrene via actions on LPS binding to CD14 and the TLR4 co-receptor signaling. In conclusion, our findings based on computational approaches, small molecules from Maqian present as promising agents which could regulate inflammatory response and modulate gut microbiota in type 1 diabetes mellitus.

10.
Ann Med ; 56(1): 2271942, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38346353

RESUMEN

AIM: The use of tobacco is responsible for many preventable diseases and deaths worldwide. Digital interventions have greatly improved patient health and clinical care and have proven to be effective for quitting smoking in the general population due to their flexibility and potential for personalization. However, there is limited evidence on the effectiveness of digital interventions for smoking cessation in Asian countries. METHODS: Three major databases - Web of Science (WOS), Scopus, and PubMed - for relevant studies published between 1 January 2010 and 12 February 2023 were searched for studies evaluating the effectiveness of digital intervention for smoking cessation in Asian countries. RESULTS: A total of 25 studies of varying designs were eligible for this study collectively involving a total of n = 22,005 participants from 9 countries. Among different digital tools for smoking cessation, the highest abstinence rate (70%) was reported with cognitive behavioural theory (CBT)-based smoking cessation intervention via Facebook followed by smartphone app (60%), WhatsApp (59.9%), and Pharmacist counselling with Quit US smartphone app (58.4%). However, WhatsApp was preferred over Facebook intervention due to lower rates of relapse. WeChat was responsible for 15.6% and 41.8% 7-day point prevalence abstinence. For telephone/text messaging abstinence rate ranged from 8-44.3% and quit rates from 6.3% to 16.8%. Whereas, no significant impact of media/multimedia messages and web-based learning on smoking cessation was observed in this study. CONCLUSION: Based on the study findings the use of digital tools can be considered an alternative and cost-effective smoking cessation intervention as compared to traditional smoking cessation interventions.


Asunto(s)
Cese del Hábito de Fumar , Envío de Mensajes de Texto , Humanos , Cese del Hábito de Fumar/psicología , Fumar/epidemiología , Consejo , Prevalencia
11.
Heliyon ; 10(1): e23084, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38169772

RESUMEN

Tetraclinis articulata is a known traditional medicinal plant used to manage various ailments, such as diabetes, rheumatism and infectious diseases. This study aims to determine the chemical constituents of T. articulata essential oil (EO) and to evaluate its in vitro antibacterial, anti-candidal, antioxidant, anti-inflammatory and dermatoprotective properties. In addition, a computational docking approach was used to predict the potential antioxidant, antibacterial, antifungal, anti-inflammatory, and cytotoxic properties of the identified compounds. The volatile oil obtained by hydrodistillation was characterized using gas chromatography-mass spectrometry (GC-MS). The antioxidant activity of T. articulata EO was investigated using three complementary assays: DPPH, ABTS and FRAP. Lipoxygenase (5-LOX) and tyrosinase enzymes were used to assess the anti-inflammatory and dermatoprotective effects of this oil. Moreover, disc-diffusion technique, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays were employed for the antimicrobial screening. The GC-MS analysis revealed that bornyl acetate (41.80 %), α-pinene (17.97 %) and camphor (15.97 %) are the major components of the studied EO. Moreover, T. articulata EO has exhibited promising antioxidant effect on FRAP, DPPH, and ABTS experiments. It also significantly inhibited 5-LOX (IC50 = 67.82 ± 0.03 µg/mL) and tyrosinase (IC50 = 211.93 ± 0.02 µg/mL). The results of MIC and MBC assays indicated that T. articulata EO is able to inhibit the growth of all tested bacteria (Gram + and Gram -) and Candida species. The ratio of tolerance level indicated that the tested oil was bactericidal against the Gram + bacteria and Candida species, whereas it has a bacteriostatic behavior against the Gram- bacteria. In light of these findings, T. articulata EO may be suggested as a potential pharmaceutical agent to prevent inflammation and skin problems and may serve as a natural antimicrobial and antioxidant alternative for sustainable application in food products.

12.
Biomed Pharmacother ; 170: 116070, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38163396

RESUMEN

Two-dimensional (2D) nanomaterials have garnered enormous attention seemingly due to their unusual architecture and properties. Graphene and graphene oxide based 2D nanomaterials remained the most sought after for several years but the quest to design superior 2D nanomaterials which can find wider application gave rise to development of non-graphene 2D materials as well. Consequently, in addition to graphene based 2D nanomaterials, 2D nanostructures designed using macromolecules (such as DNAs, proteins, peptides and peptoids), transition metal dichalcogenides, transition-metal carbides and/or nitrides (MXene), black phosphorous, chitosan, hexagonal boron nitrides, and graphitic carbon nitride, and covalent organic frameworks have been developed. Interestingly, these 2D nanomaterials have found applications in diagnosis and treatment of various diseases including Alzheimer's disease (AD). Although AD is one of the most debilitating neurodegenerative conditions across the globe; unfortunately, there remains a paucity of effective diagnostic and/or therapeutic intervention for it till date. In this scenario, nanomaterial-based biosensors, or therapeutics especially 2D nanostructures are emerging to be promising in this regard. This review summarizes the diagnostic and therapeutic platforms developed for AD using 2D nanostructures. Collectively, it is worth mentioning that these 2D nanomaterials would seemingly provide an alternative and intriguing platform for biomedical interventions.


Asunto(s)
Enfermedad de Alzheimer , Técnicas Biosensibles , Grafito , Nanoestructuras , Humanos , Grafito/química , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/tratamiento farmacológico , Nanoestructuras/uso terapéutico , Nanoestructuras/química , Técnicas Biosensibles/métodos
13.
JMIR Med Educ ; 10: e47339, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38214967

RESUMEN

BACKGROUND: Artificial Intelligence (AI) plays an important role in many fields, including medical education, practice, and research. Many medical educators started using ChatGPT at the end of 2022 for many purposes. OBJECTIVE: The aim of this study was to explore the potential uses, benefits, and risks of using ChatGPT in education modules on integrated pharmacotherapy of infectious disease. METHODS: A content analysis was conducted to investigate the applications of ChatGPT in education modules on integrated pharmacotherapy of infectious disease. Questions pertaining to curriculum development, syllabus design, lecture note preparation, and examination construction were posed during data collection. Three experienced professors rated the appropriateness and precision of the answers provided by ChatGPT. The consensus rating was considered. The professors also discussed the prospective applications, benefits, and risks of ChatGPT in this educational setting. RESULTS: ChatGPT demonstrated the ability to contribute to various aspects of curriculum design, with ratings ranging from 50% to 92% for appropriateness and accuracy. However, there were limitations and risks associated with its use, including incomplete syllabi, the absence of essential learning objectives, and the inability to design valid questionnaires and qualitative studies. It was suggested that educators use ChatGPT as a resource rather than relying primarily on its output. There are recommendations for effectively incorporating ChatGPT into the curriculum of the education modules on integrated pharmacotherapy of infectious disease. CONCLUSIONS: Medical and health sciences educators can use ChatGPT as a guide in many aspects related to the development of the curriculum of the education modules on integrated pharmacotherapy of infectious disease, syllabus design, lecture notes preparation, and examination preparation with caution.


Asunto(s)
Enfermedades Transmisibles , Personal Docente , Humanos , Inteligencia Artificial , Escolaridad , Curriculum , Enfermedades Transmisibles/tratamiento farmacológico
14.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1505-1524, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37755516

RESUMEN

Saussurea costus (Falc.) Lipsch., commonly known as costus, is a perennial herb that has been traditionally used in various indigenous medicinal systems across Asia. Its historical prominence in traditional remedies underscores the need to explore its phytochemical composition, pharmacological properties, and potential therapeutic benefits. This review aims to provide a comprehensive overview of the available literature on the pharmacological properties, phytochemical constituents, ethnobotanical uses, and therapeutic potential of S. costus. An exhaustive search was performed across multiple electronic databases, including PubMed/MedLine, Google Scholar, Web of Science, Scopus, TRIP database, and Science Direct. Both experimental and clinical studies, as well as traditional ethnobotanical records, were considered for inclusion. The phytochemical analysis revealed that S. costus contains a plethora of bioactive compounds, including sesquiterpenes, flavonoids, and essential oils, which are responsible for its myriad of medicinal properties. The pharmacological studies have demonstrated its anti-inflammatory, anti-oxidant, anti-cancer, hepatoprotective, and immunomodulatory effects, among others. Ethnobotanical data showcased its extensive use in treating ailments like asthma, digestive disorders, and skin conditions. Some clinical trials also underscore its efficacy in certain health conditions, corroborating its traditional uses. S. costus possesses significant therapeutic potential, largely attributable to its rich phytochemical composition; the convergence of its traditional uses and modern pharmacological findings suggests promising avenues for future research, especially in drug development and understanding its mechanism of action in various ailments.


Asunto(s)
Saussurea , Sesquiterpenos , Saussurea/química , Fitoterapia , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Fitoquímicos/análisis , Sesquiterpenos/farmacología
15.
Biomed Pharmacother ; 170: 115989, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38103309

RESUMEN

Cyanobacteria and microalgae contain various phytochemicals, including bioactive components in the form of secondary metabolites, namely flavonoids, phenolic acids, terpenoids, and tannins, with remarkable anticancer effects. This review highlights the recent advances in bioactive compounds, with potential anticancer activity, produced by cyanobacteria and microalgae. Previous in vitro investigations showed that many of these bioactive compounds exhibit potent effects against different human cancer types, such as leukemia and breast cancers. Multiple mechanisms implicated in the antitumor effect of these compounds were elucidated, including their ability to target cellular, subcellular, and molecular checkpoints linked to cancer development and promotion. Recent findings have highlighted various mechanisms of action of bioactive compounds produced by cyanobacteria and microalgae, including induction of autophagy and apoptosis, inhibition of telomerase and protein kinases, as well as modulation of epigenetic modifications. In vivo investigations have demonstrated a potent anti-angiogenesis effect on solid tumors, as well as a reduction in tumor volume. Some of these compounds were examined in clinical investigations for certain types of cancers, making them potent candidates/scaffolds for antitumor drug development.


Asunto(s)
Antineoplásicos , Cianobacterias , Microalgas , Neoplasias , Humanos , Microalgas/química , Cianobacterias/metabolismo , Factores Biológicos , Antineoplásicos/química , Neoplasias/tratamiento farmacológico
16.
Sci Rep ; 13(1): 22767, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38123687

RESUMEN

Eight Moroccan avocado varieties were analyzed for their nutritional composition and physicochemical properties. The nutritional contents of the sample were determined through the evaluation of the moisture, oil, ash, protein, and carbohydrate contents, and energy value calculation. Additionally, macroelements (Ca, Mg, and Na) and microelements (Fe, Zn, Cu, and Mn) were determined in the mineral profile. Oils were examined also for their fatty acid, phytosterol, and tocopherol profiles. As a result of the study, the avocado presents significant differences between the eight studied varieties (p < 0.05), with regard to moisture content (57.88 g/100 g to 84.71 g/100 g), oil content (8.41 g/100 g to 57.88 g/100 g), ash (0.57 g/100 g to 1.37 g/100 g), protein content (5.7 g/100 g to 8.61 g/100 g), carbohydrate content (5.63 g/100 g to 14.61 g/100 g), and energy value (99.9 kcal/100 g to 316.8 kcal/100 g). Sodium (5783.01 mg/kg to 12,056.19 mg/kg) was the predominant macro-element in all varieties, followed by calcium (295.95 mg/kg to 531.67 mg/kg), and magnesium (246.29 mg/kg to 339.84 mg/kg). Copper (85.92 mg/kg to 112. 31 mg/kg) was the main microelement in all varieties, followed by iron (8.5 mg/kg to 20.32 mg/kg), and manganese (7.3 mg/kg to 18.45 mg/kg), while zinc (1.72 mg/kg to 5.66 mg/kg) was detected in small amounts. In addition, significant difference was observed in lipid profiles, according to the eight studied varieties (p < 0.05). Avocado oils were mainly composed of monounsaturated fatty acids (76.89 g/100 g to 84.7 g/100 g), with oleic acid (50.38 g/100 g to 71.49 g/100 g) standing out as particularly characteristic, while ß-sitosterol (l2365.58 mg/kg to 4559.27 mg/kg), and α-tocopherol (30.08 mg/kg to 182.94 mg/kg) were among its major phytosterols and tocopherols. All avocado varieties represented in this study can be consumed as a fruit as an excellent source of energy, minerals, fatty acids, phytosterols, and tocopherols. The regular consumption of this fruit provides the body with several essential nutrients.


Asunto(s)
Persea , Fitosteroles , Persea/química , Ácidos Grasos/química , Tocoferoles , Minerales , Carbohidratos , Aceites
17.
Biomed Pharmacother ; 169: 115783, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37944439

RESUMEN

Nuclear receptors (NRs) represent intracellular proteins that function as a signaling network of transcriptional factors to control genes in response to a variety of environmental, dietary, and hormonal stimulations or serve as orphan receptors lacking a recognized ligand. They also play an essential role in normal development, metabolism, cell growth, cell division, physiology, reproduction, and homeostasis and function as biological markers for tumor subclassification and as targets for hormone therapy. NRs, including steroid hormone receptors (SHRs), have been studied as tools to examine the fundamentals of transcriptional regulation within the development of mammals and human physiology, in addition to their links to disturbances. In this regard, it is widely recognized that aberrant NR signaling is responsible for the pathological growth of hormone-dependent tumors in response to SHRs dysregulation and consequently represents a potential therapeutic candidate in a range of diseases, as in the case of prostate cancer and breast cancer. On the other hand, phytosterols are a group of plant-derived compounds that act directly as ligands for NRs and have proven their efficacy in the management of diabetes, heart diseases, and cancers. However, these plants are not suggested in cases of hormone-dependent cancer since a certain group of plants contains molecules with a chemical structure similar to that of estrogens, which are known as phytoestrogens or estrogen-like compounds, such as lignans, coumestans, and isoflavones. Therefore, it remains an open and controversial debate regarding whether consuming a phytosterol-rich diet and adopting a vegetarian lifestyle like the Mediterranean diet may increase the risk of developing steroid hormone-dependent cancers by constitutively activating SHRs and thereby leading to tumor transformation. Overall, the purpose of this review is to better understand the relevant mechanistic pathways and explore epidemiological investigations in order to establish that phytosterols may contribute to the activation of NRs as cancer drivers in hormone-dependent cancers.


Asunto(s)
Neoplasias de la Mama , Fitosteroles , Receptores de Esteroides , Animales , Humanos , Masculino , Estrógenos/metabolismo , Mamíferos , Fitoestrógenos , Receptores Citoplasmáticos y Nucleares , Receptores de Esteroides/química , Receptores de Esteroides/fisiología , Esteroides
18.
Molecules ; 28(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38005223

RESUMEN

Exposure to water-pipe smoking, whether flavored or unflavored, has been shown to instigate inflammation and oxidative stress in BALB/c mice. This consequently results in alterations in the expression of inflammatory markers and antioxidant genes. This study aimed to scrutinize the impact of Epigallocatechin gallate (EGCG)-a key active component of green tea-on inflammation and oxidative stress in BALB/c mice exposed to water-pipe smoke. The experimental setup included a control group, a flavored water-pipe smoke (FWP) group, an unflavored water-pipe smoke (UFWP) group, and EGCG-treated flavored and unflavored groups (FWP + EGCG and UFWP + EGCG). Expression levels of IL-6, IL1B, TNF-α, CAT, GPXI, MT-I, MT-II, SOD-I, SOD-II, and SOD-III were evaluated in lung, liver, and kidney tissues. Histopathological changes were also assessed. The findings revealed that the EGCG-treated groups manifested a significant decline in the expression of inflammatory markers and antioxidant genes compared to the FWP and UFWP groups. This insinuates that EGCG holds the capacity to alleviate the damaging effects of water-pipe smoke-induced inflammation and oxidative stress. Moreover, enhancements in histopathological features were observed in the EGCG-treated groups, signifying a protective effect against tissue damage induced by water-pipe smoking. These results underscore the potential of EGCG as a protective agent against the adverse effects of water-pipe smoking. By curbing inflammation and oxidative stress, EGCG may aid in the prevention or mitigation of smoking-associated diseases.


Asunto(s)
Catequina , Fumar en Pipa de Agua , Ratones , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Estrés Oxidativo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Catequina/farmacología , Expresión Génica , Superóxido Dismutasa/metabolismo
19.
Front Biosci (Landmark Ed) ; 28(9): 229, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37796709

RESUMEN

BACKGROUND: Screening new natural molecules with pharmacological and/or cosmetic properties remains a highly sought-after area of research. Moreover, essential oils and volatile compounds have recently garnered significant interest as natural substance candidates. In this study, the volatile components of Pistacia lentiscus L. essential oils (PLEOs) isolated from the fruit and its main compounds, alpha-pinene, and limonene, are investigated for antioxidant, antidiabetic, and dermatoprotective activities. METHODS: In vitro antioxidant activity was investigated using 2,2'-diphenyl-1-picrylhydrazyl (DPPH), fluorescence recovery after photobleaching (FRAP), and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) methods. The antidiabetic and dermatoprotective effects were studied using enzyme inhibitory activities. RESULTS: Antioxidant tests showed that PLEO has the best activity (ranging from 29.64 ± 3.04 to 73.80 ± 3.96 µg/mL) compared to its main selected molecules (ranging from 74 ± 3.72 to 107.23 ± 5.03 µg/mL). The α-glucosidase and α-amylase assays demonstrated that the elements tested have a promising antidiabetic potential with IC50values ranging from 78.03 ± 2.31 to 116.03 ± 7.42 µg/mL and 74.39 ± 3.08 to 112.35 ± 4.92 µg/mL for the α-glucosidase and α-amylase assays, respectively, compared to the standard drug. For the tyrosinase test, we found that the EOs (IC50 = 57.72 ± 2.86 µg/mL) followed by limonene (IC50 = 74.24 ± 2.06 µg/mL) and α-pinene (IC50 = 97.45 ± 5.22 µg/mL) all exhibited greater inhibitory effects than quercetin (IC50 = 246.90 ± 2.54 µg/mL). CONCLUSIONS: Our results suggest that the biological activities of PLEO, as well as its main compounds, make them promising candidates for the development of new strategies aimed at improving dermatoprotection and treating diseases associated with diabetes mellitus and oxidative stress.


Asunto(s)
Aceites Volátiles , Pistacia , Aceites Volátiles/farmacología , Aceites Volátiles/química , Limoneno/farmacología , Antioxidantes/farmacología , Antioxidantes/química , alfa-Glucosidasas , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , alfa-Amilasas
20.
Heliyon ; 9(9): e19814, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809691

RESUMEN

Sweet orange (Citrus × sinensis (L.) Osbeck), lentisk (Pistacia lentiscus L.) and lemon eucalyptus (Eucalyptus citriodora Hook) are medicinal plants known by its culinary virtues. Their volatile oils have demonstrated promising antimicrobial activity against a panel of microbial strains, including those implicated in food deterioration. In this exploratory investigation, we aimed to determine the antimicrobial formulation of sweet orange, lentisk and lemon eucalyptus essential oils (EOs) using the simplex-centroid mixture design approach coupled with a broth microdilution method. EOs were first extracted by hydrodistillation, and then their phytochemical profile was characterized using Gas chromatography-mass spectrometry (GC-MS). GC-MS analysis identified d-limonene (14.27%), careen-3 (14.11%), ß-myrcene (12.53%) as main components of lentisk EOs, while lemon eucalyptus was dominated by citronellal (39.40%), ß-citronellol (16.39%) and 1,8-cineole (9.22%). For sweet orange EOs, d-limonene (87.22%) was the principal compound. The three EOs exhibited promising antimicrobial potential against various microorganisms. Lemon eucalyptus and sweet orange EO showed high activity against most tested microorganisms, while lentisk EO exerted important effect against some microbes but only moderate activity against others. The optimization formulations of antimicrobial potential showed interesting synergistic effects between three EOs. The best combinations predicted on C. albicans, S. aureus, E. coli, S. enterica and B. cereus correspond to 44%/55%/0%, 54%/16%/28%, 43%/22%/33%, 45%/17%/36% and 36%/30%/32% of Citrus sinensis, Pistacia lentiscus and Eucalyptus citriodora EOs, respectively. These findings suggest that the combination of EOs could be used as natural food preservatives and antimicrobial agents. However, further studies are needed to determine the mechanisms of action and efficacy of these EOs against different microorganisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA