Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
bioRxiv ; 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39314459

RESUMEN

We here revisited the concept that glymphatic clearance is enhanced by sleep and anesthesia. Utilizing dynamic magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and fluorescent fiber photometry, we report brain glymphatic clearance is enhanced by both sleep and anesthesia, and sharply suppressed by wakefulness. Another key finding was that less tracer enters the brains of awake animals and that brain clearance across different brain states can only be compared after adjusting for the injected tracer dose.

2.
Handb Clin Neurol ; 205: 283-295, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39341659

RESUMEN

Much of clinical neurology is concerned with diseases of-or involving-the brain's subcortical white matter. Common to these disorders is the loss of myelin, reflecting the elimination or dysfunction of oligodendrocytes and fibrous astrocytes. As such, the introduction of glial progenitor cells, which can give rise to new oligodendrocytes and astrocytes alike, may be a feasible strategy for treating a broad variety of conditions in which white matter loss is causally involved. This review first covers the sourcing and production of human glial progenitor cells, and the preclinical evidence for their efficacy in achieving myelin restoration in vivo. It then discusses both pediatric and adult disease targets for which transplanted glial progenitors may prove of therapeutic value, those challenges that remain in the clinical application of a glial cell replacement strategy, and the clinical endpoints by which the efficacy of this approach may be assessed.


Asunto(s)
Trasplante de Células Madre , Humanos , Animales , Trasplante de Células Madre/métodos , Enfermedades Desmielinizantes/terapia , Enfermedades Desmielinizantes/patología , Vaina de Mielina , Neuroglía/trasplante , Células Madre/fisiología
3.
Brain ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133566

RESUMEN

Progressive multifocal leukoencephalopathy (PML) is a demyelinating infection of the immunosuppressed brain, mediated by the gliotropic polyomavirus JCV. JCV replicates in human glial progenitor cells and astrocytes, which undergo viral T antigen-triggered mitosis, enabling viral replication. We asked if JCV spread might therefore be accelerated by glial proliferation. Using both in vitro analysis and a human glial chimeric mouse model of JCV infection, we found that dividing human astrocytes supported JCV propagation to a substantially greater degree than did mitotically quiescent cells. Accordingly, bulk and single cell RNA-sequence analysis revealed that JCV-infected glia differentially manifested cell cycle-linked disruption of both DNA damage response and transcriptional regulatory pathways. In vivo, JCV infection of humanized glial chimeras was greatly accentuated by cuprizone-induced demyelination and its associated mobilization of GPCs. Importantly, in vivo infection triggered the death of uninfected as well as infected glia, reflecting significant bystander death. Together, these data suggest that JCV propagation in PML may be accelerated by glial cell division. As such, the accentuated glial proliferation attending disease-associated demyelination may provide an especially favorable environment for JCV propagation, thus potentiating oligodendrocytic bystander death and further accelerating demyelination in susceptible hosts.

4.
bioRxiv ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39005270

RESUMEN

Human-mouse chimeric brain models, generated by transplanting human induced pluripotent stem cell (hiPSC)-derived neural cells, are valuable for studying the development and function of human neural cells in vivo. Understanding glial-glial and glial-neuronal interactions is essential for unraveling the complexities of brain function and developing treatments for neurological disorders. To explore these interactions between human neural cells within an intact brain environment, we employe a co-transplantation strategy involving the engraftment of hiPSC-derived neural progenitor cells along with primitive macrophage progenitors into the neonatal mouse brain. This approach creates human-mouse chimeric brains containing human microglia, macroglia (astroglia and oligodendroglia), and neurons. Using super-resolution imaging and 3D reconstruction techniques, we examine the dynamics between human neurons and glia, unveiling human microglia engulfing immature human neurons, microglia pruning synapses of human neurons, and significant interactions between human oligodendrocytes and neurons. Single-cell RNA sequencing analysis of the chimeric brain uncovers a close recapitulation of the human glial progenitor cell population, along with a dynamic stage in astroglial development that mirrors the processes found in the human brain. Furthermore, cell-cell communication analysis highlights significant neuronal-glial and glial-glial interactions, especially the interaction between adhesion molecules neurexins and neuroligins. This innovative co-transplantation model opens up new avenues for exploring the complex pathophysiological mechanisms underlying human neurological diseases. It holds particular promise for studying disorders where glial-neuronal interactions and non-cell-autonomous effects play crucial roles.

5.
Brain ; 147(9): 3099-3112, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39028640

RESUMEN

Huntington's disease and juvenile-onset schizophrenia have long been regarded as distinct disorders. However, both manifest cell-intrinsic abnormalities in glial differentiation, with resultant astrocytic dysfunction and hypomyelination. To assess whether a common mechanism might underlie the similar glial pathology of these otherwise disparate conditions, we used comparative correlation network approaches to analyse RNA-sequencing data from human glial progenitor cells (hGPCs) produced from disease-derived pluripotent stem cells. We identified gene sets preserved between Huntington's disease and schizophrenia hGPCs yet distinct from normal controls that included 174 highly connected genes in the shared disease-associated network, focusing on genes involved in synaptic signalling. These synaptic genes were largely suppressed in both schizophrenia and Huntington's disease hGPCs, and gene regulatory network analysis identified a core set of upstream regulators of this network, of which OLIG2 and TCF7L2 were prominent. Among their downstream targets, ADGRL3, a modulator of glutamatergic synapses, was notably suppressed in both schizophrenia and Huntington's disease hGPCs. Chromatin immunoprecipitation sequencing confirmed that OLIG2 and TCF7L2 each bound to the regulatory region of ADGRL3, whose expression was then rescued by lentiviral overexpression of these transcription factors. These data suggest that the disease-associated suppression of OLIG2 and TCF7L2-dependent transcription of glutamate signalling regulators may impair glial receptivity to neuronal glutamate. The consequent loss of activity-dependent mobilization of hGPCs may yield deficient oligodendrocyte production, and hence the hypomyelination noted in these disorders, as well as the disrupted astrocytic differentiation and attendant synaptic dysfunction associated with each. Together, these data highlight the importance of convergent glial molecular pathology in both the pathogenesis and phenotypic similarities of two otherwise unrelated disorders, Huntington's disease and schizophrenia.


Asunto(s)
Enfermedad de Huntington , Neuroglía , Esquizofrenia , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Humanos , Esquizofrenia/genética , Esquizofrenia/metabolismo , Neuroglía/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos/genética , Redes Reguladoras de Genes , Células Madre Pluripotentes/metabolismo
6.
Science ; 385(6704): 80-86, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38963846

RESUMEN

Classical migraine patients experience aura, which is transient neurological deficits associated with cortical spreading depression (CSD), preceding headache attacks. It is not currently understood how a pathological event in cortex can affect peripheral sensory neurons. In this study, we show that cerebrospinal fluid (CSF) flows into the trigeminal ganglion, establishing nonsynaptic signaling between brain and trigeminal cells. After CSD, ~11% of the CSF proteome is altered, with up-regulation of proteins that directly activate receptors in the trigeminal ganglion. CSF collected from animals exposed to CSD activates trigeminal neurons in naïve mice in part by CSF-borne calcitonin gene-related peptide (CGRP). We identify a communication pathway between the central and peripheral nervous system that might explain the relationship between migrainous aura and headache.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Depresión de Propagación Cortical , Trastornos Migrañosos , Ganglio del Trigémino , Animales , Ratones , Péptido Relacionado con Gen de Calcitonina/líquido cefalorraquídeo , Péptido Relacionado con Gen de Calcitonina/metabolismo , Líquido Cefalorraquídeo/metabolismo , Modelos Animales de Enfermedad , Trastornos Migrañosos/líquido cefalorraquídeo , Trastornos Migrañosos/metabolismo , Trastornos Migrañosos/fisiopatología , Proteoma/metabolismo , Transducción de Señal , Ganglio del Trigémino/metabolismo , Ganglio del Trigémino/fisiopatología
7.
Nat Commun ; 15(1): 3873, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719882

RESUMEN

Human glial progenitor cells (hGPCs) exhibit diminished expansion competence with age, as well as after recurrent demyelination. Using RNA-sequencing to compare the gene expression of fetal and adult hGPCs, we identify age-related changes in transcription consistent with the repression of genes enabling mitotic expansion, concurrent with the onset of aging-associated transcriptional programs. Adult hGPCs develop a repressive transcription factor network centered on MYC, and regulated by ZNF274, MAX, IKZF3, and E2F6. Individual over-expression of these factors in iPSC-derived hGPCs lead to a loss of proliferative gene expression and an induction of mitotic senescence, replicating the transcriptional changes incurred during glial aging. miRNA profiling identifies the appearance of an adult-selective miRNA signature, imposing further constraints on the expansion competence of aged GPCs. hGPC aging is thus associated with acquisition of a MYC-repressive environment, suggesting that suppression of these repressors of glial expansion may permit the rejuvenation of aged hGPCs.


Asunto(s)
Envejecimiento , MicroARNs , Neuroglía , Factores de Transcripción , Humanos , Neuroglía/metabolismo , Neuroglía/citología , Envejecimiento/genética , Envejecimiento/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , MicroARNs/genética , MicroARNs/metabolismo , Senescencia Celular/genética , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre/metabolismo , Células Madre/citología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Adulto , Redes Reguladoras de Genes , Proliferación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Perfilación de la Expresión Génica
8.
Neurooncol Adv ; 6(1): vdae005, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38616896

RESUMEN

Background: Non-enhancing (NE) infiltrating tumor cells beyond the contrast-enhancing (CE) bulk of tumor are potential propagators of recurrence after gross total resection of high-grade glioma. Methods: We leveraged single-nucleus RNA sequencing on 15 specimens from recurrent high-grade gliomas (n = 5) to compare prospectively identified biopsy specimens acquired from CE and NE regions. Additionally, 24 CE and 22 NE biopsies had immunohistochemical staining to validate RNA findings. Results: Tumor cells in NE regions are enriched in neural progenitor cell-like cellular states, while CE regions are enriched in mesenchymal-like states. NE glioma cells have similar proportions of proliferative and putative glioma stem cells relative to CE regions, without significant differences in % Ki-67 staining. Tumor cells in NE regions exhibit upregulation of genes previously associated with lower grade gliomas. Our findings in recurrent GBM paralleled some of the findings in a re-analysis of a dataset from primary GBM. Cell-, gene-, and pathway-level analyses of the tumor microenvironment in the NE region reveal relative downregulation of tumor-mediated neovascularization and cell-mediated immune response, but increased glioma-to-nonpathological cell interactions. Conclusions: This comprehensive analysis illustrates differing tumor and nontumor landscapes of CE and NE regions in high-grade gliomas, highlighting the NE region as an area harboring likely initiators of recurrence in a pro-tumor microenvironment and identifying possible targets for future design of NE-specific adjuvant therapy. These findings also support the aggressive approach to resection of tumor-bearing NE regions.

9.
Brain ; 147(5): 1726-1739, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38462589

RESUMEN

Progressive neuronal loss is a hallmark feature distinguishing neurodegenerative diseases from normal ageing. However, the underlying mechanisms remain unknown. Extracellular K+ homeostasis is a potential mediator of neuronal injury as K+ elevations increase excitatory activity. The dysregulation of extracellular K+ and potassium channel expressions during neurodegeneration could contribute to this distinction. Here we measured the cortical extracellular K+ concentration ([K+]e) in awake wild-type mice as well as murine models of neurodegeneration using K+-sensitive microelectrodes. Unexpectedly, aged wild-type mice exhibited significantly lower cortical [K+]e than young mice. In contrast, cortical [K+]e was consistently elevated in Alzheimer's disease (APP/PS1), amyotrophic lateral sclerosis (ALS) (SOD1G93A) and Huntington's disease (R6/2) models. Cortical resting [K+]e correlated inversely with neuronal density and the [K+]e buffering rate but correlated positively with the predicted neuronal firing rate. Screening of astrocyte-selective genomic datasets revealed a number of potassium channel genes that were downregulated in these disease models but not in normal ageing. In particular, the inwardly rectifying potassium channel Kcnj10 was downregulated in ALS and Huntington's disease models but not in normal ageing, while Fxyd1 and Slc1a3, each of which acts as a negative regulator of potassium uptake, were each upregulated by astrocytes in both Alzheimer's disease and ALS models. Chronic elevation of [K+]e in response to changes in gene expression and the attendant neuronal hyperexcitability may drive the neuronal loss characteristic of these neurodegenerative diseases. These observations suggest that the dysregulation of extracellular K+ homeostasis in a number of neurodegenerative diseases could be due to aberrant astrocytic K+ buffering and as such, highlight a fundamental role for glial dysfunction in neurodegeneration.


Asunto(s)
Envejecimiento , Enfermedades Neurodegenerativas , Potasio , Animales , Potasio/metabolismo , Envejecimiento/metabolismo , Ratones , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Ratones Transgénicos , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio de Rectificación Interna/genética , Masculino , Ratones Endogámicos C57BL , Neuronas/metabolismo , Humanos , Modelos Animales de Enfermedad , Corteza Cerebral/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/genética , Femenino , Astrocitos/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-38316552

RESUMEN

The inability of the mammalian central nervous system (CNS) to undergo spontaneous regeneration has long been regarded as a central tenet of neurobiology. However, while this is largely true of the neuronal elements of the adult mammalian CNS, save for discrete populations of granule neurons, the same is not true of its glial elements. In particular, the loss of oligodendrocytes, which results in demyelination, triggers a spontaneous and often highly efficient regenerative response, remyelination, in which new oligodendrocytes are generated and myelin sheaths are restored to denuded axons. Yet remyelination in humans is not without limitation, and a variety of demyelinating conditions are associated with sustained and disabling myelin loss. In this work, we will (1) review the biology of remyelination, including the cells and signals involved; (2) describe when remyelination occurs and when and why it fails, including the consequences of its failure; and (3) discuss approaches for therapeutically enhancing remyelination in demyelinating diseases of both children and adults, both by stimulating endogenous oligodendrocyte progenitor cells and by transplanting these cells into demyelinated brain.


Asunto(s)
Enfermedades Desmielinizantes , Remielinización , Animales , Adulto , Niño , Humanos , Remielinización/fisiología , Regeneración Nerviosa/fisiología , Vaina de Mielina/fisiología , Sistema Nervioso Central , Mamíferos
11.
Nat Cancer ; 5(1): 147-166, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38172338

RESUMEN

Glioblastoma is the most lethal primary brain tumor with glioblastoma stem cells (GSCs) atop a cellular hierarchy. GSCs often reside in a perivascular niche, where they receive maintenance cues from endothelial cells, but the role of heterogeneous endothelial cell populations remains unresolved. Here, we show that lymphatic endothelial-like cells (LECs), while previously unrecognized in brain parenchyma, are present in glioblastomas and promote growth of CCR7-positive GSCs through CCL21 secretion. Disruption of CCL21-CCR7 paracrine communication between LECs and GSCs inhibited GSC proliferation and growth. LEC-derived CCL21 induced KAT5-mediated acetylation of HMGCS1 on K273 in GSCs to enhance HMGCS1 protein stability. HMGCS1 promoted cholesterol synthesis in GSCs, favorable for tumor growth. Expression of the CCL21-CCR7 axis correlated with KAT5 expression and HMGCS1K273 acetylation in glioblastoma specimens, informing patient outcome. Collectively, glioblastomas contain previously unrecognized LECs that promote the molecular crosstalk between endothelial and tumor cells, offering potentially alternative therapeutic strategies.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/terapia , Citocinas/metabolismo , Células Endoteliales/metabolismo , Receptores CCR7/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Proliferación Celular , Colesterol/metabolismo
12.
Nature ; 623(7989): 992-1000, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37968397

RESUMEN

Cerebral oedema is associated with morbidity and mortality after traumatic brain injury (TBI)1. Noradrenaline levels are increased after TBI2-4, and the amplitude of the increase in noradrenaline predicts both the extent of injury5 and the likelihood of mortality6. Glymphatic impairment is both a feature of and a contributor to brain injury7,8, but its relationship with the injury-associated surge in noradrenaline is unclear. Here we report that acute post-traumatic oedema results from a suppression of glymphatic and lymphatic fluid flow that occurs in response to excessive systemic release of noradrenaline. This post-TBI adrenergic storm was associated with reduced contractility of cervical lymphatic vessels, consistent with diminished return of glymphatic and lymphatic fluid to the systemic circulation. Accordingly, pan-adrenergic receptor inhibition normalized central venous pressure and partly restored glymphatic and cervical lymphatic flow in a mouse model of TBI, and these actions led to substantially reduced brain oedema and improved functional outcomes. Furthermore, post-traumatic inhibition of adrenergic signalling boosted lymphatic export of cellular debris from the traumatic lesion, substantially reducing secondary inflammation and accumulation of phosphorylated tau. These observations suggest that targeting the noradrenergic control of central glymphatic flow may offer a therapeutic approach for treating acute TBI.


Asunto(s)
Edema Encefálico , Lesiones Traumáticas del Encéfalo , Sistema Glinfático , Norepinefrina , Animales , Ratones , Antagonistas Adrenérgicos/farmacología , Antagonistas Adrenérgicos/uso terapéutico , Edema Encefálico/complicaciones , Edema Encefálico/tratamiento farmacológico , Edema Encefálico/metabolismo , Edema Encefálico/prevención & control , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Sistema Glinfático/efectos de los fármacos , Sistema Glinfático/metabolismo , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/prevención & control , Vasos Linfáticos/metabolismo , Norepinefrina/metabolismo , Fosforilación , Receptores Adrenérgicos/metabolismo
13.
Cell Rep ; 42(9): 113130, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37708026

RESUMEN

The naked mole rat (NMR) is the longest-lived rodent, resistant to multiple age-related diseases including neurodegeneration. However, the mechanisms underlying the NMR's resistance to neurodegenerative diseases remain elusive. Here, we isolated oligodendrocyte progenitor cells (OPCs) from NMRs and compared their transcriptome with that of other mammals. Extracellular matrix (ECM) genes best distinguish OPCs of long- and short-lived species. Notably, expression levels of CD44, an ECM-binding protein that has been suggested to contribute to NMR longevity by mediating the effect of hyaluronan (HA), are not only high in OPCs of long-lived species but also positively correlate with longevity in multiple cell types/tissues. We found that CD44 localizes to the endoplasmic reticulum (ER) and enhances basal ATF6 activity. CD44 modifies proteome and membrane properties of the ER and enhances ER stress resistance in a manner dependent on unfolded protein response regulators without the requirement of HA. HA-independent role of CD44 in proteostasis regulation may contribute to mammalian longevity.


Asunto(s)
Estrés del Retículo Endoplásmico , Longevidad , Animales , Longevidad/fisiología , Respuesta de Proteína Desplegada , Transcriptoma , Ratas Topo
14.
Nat Biotechnol ; 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460676

RESUMEN

Competition among adult brain cells has not been extensively researched. To investigate whether healthy glia can outcompete diseased human glia in the adult forebrain, we engrafted wild-type (WT) human glial progenitor cells (hGPCs) produced from human embryonic stem cells into the striata of adult mice that had been neonatally chimerized with mutant Huntingtin (mHTT)-expressing hGPCs. The WT hGPCs outcompeted and ultimately eliminated their human Huntington's disease (HD) counterparts, repopulating the host striata with healthy glia. Single-cell RNA sequencing revealed that WT hGPCs acquired a YAP1/MYC/E2F-defined dominant competitor phenotype upon interaction with the host HD glia. WT hGPCs also outcompeted older resident isogenic WT cells that had been transplanted neonatally, suggesting that competitive success depended primarily on the relative ages of competing populations, rather than on the presence of mHTT. These data indicate that aged and diseased human glia may be broadly replaced in adult brain by younger healthy hGPCs, suggesting a therapeutic strategy for the replacement of aged and diseased human glia.

15.
Proc Natl Acad Sci U S A ; 120(24): e2210719120, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37279261

RESUMEN

Astroglial dysfunction contributes to the pathogenesis of Huntington's disease (HD), and glial replacement can ameliorate the disease course. To establish the topographic relationship of diseased astrocytes to medium spiny neuron (MSN) synapses in HD, we used 2-photon imaging to map the relationship of turboRFP-tagged striatal astrocytes and rabies-traced, EGFP-tagged coupled neuronal pairs in R6/2 HD and wild-type (WT) mice. The tagged, prospectively identified corticostriatal synapses were then studied by correlated light electron microscopy followed by serial block-face scanning EM, allowing nanometer-scale assessment of synaptic structure in 3D. By this means, we compared the astrocytic engagement of single striatal synapses in HD and WT brains. R6/2 HD astrocytes exhibited constricted domains, with significantly less coverage of mature dendritic spines than WT astrocytes, despite enhanced engagement of immature, thin spines. These data suggest that disease-dependent changes in the astroglial engagement and sequestration of MSN synapses enable the high synaptic and extrasynaptic levels of glutamate and K+ that underlie striatal hyperexcitability in HD. As such, these data suggest that astrocytic structural pathology may causally contribute to the synaptic dysfunction and disease phenotype of those neurodegenerative disorders characterized by network overexcitation.


Asunto(s)
Enfermedad de Huntington , Ratones , Animales , Ratones Transgénicos , Enfermedad de Huntington/patología , Astrocitos/patología , Sinapsis/fisiología , Cuerpo Estriado/patología , Modelos Animales de Enfermedad
16.
Ann N Y Acad Sci ; 1525(1): 41-60, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37219367

RESUMEN

Astrocytes are the most abundant glial cell type in the central nervous system and are essential to the development, plasticity, and maintenance of neural circuits. Astrocytes are heterogeneous, with their diversity rooted in developmental programs modulated by the local brain environment. Astrocytes play integral roles in regulating and coordinating neural activity extending far beyond their metabolic support of neurons and other brain cell phenotypes. Both gray and white matter astrocytes occupy critical functional niches capable of modulating brain physiology on time scales slower than synaptic activity but faster than those adaptive responses requiring a structural change or adaptive myelination. Given their many associations and functional roles, it is not surprising that astrocytic dysfunction has been causally implicated in a broad set of neurodegenerative and neuropsychiatric disorders. In this review, we focus on recent discoveries concerning the contributions of astrocytes to the function of neural networks, with a dual focus on the contribution of astrocytes to synaptic development and maturation, and on their role in supporting myelin integrity, and hence conduction and its regulation. We then address the emerging roles of astrocytic dysfunction in disease pathogenesis and on potential strategies for targeting these cells for therapeutic purposes.


Asunto(s)
Astrocitos , Neuroglía , Humanos , Astrocitos/fisiología , Neuronas/metabolismo , Vaina de Mielina , Redes Neurales de la Computación
17.
Ann N Y Acad Sci ; 1522(1): 42-59, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36864567

RESUMEN

Huntington's disease (HD) is a fatal, monogenic, autosomal dominant neurodegenerative disease caused by a polyglutamine-encoding CAG expansion in the huntingtin (HTT) gene that results in mutant huntingtin proteins (mHTT) in cells throughout the body. Although large parts of the central nervous system (CNS) are affected, the striatum is especially vulnerable and undergoes marked atrophy. Astrocytes are abundant within the striatum and contain mHTT in HD, as well as in mouse models of the disease. We focus on striatal astrocytes and summarize how they participate in, and contribute to, molecular pathophysiology and disease-related phenotypes in HD model mice. Where possible, reference is made to pertinent astrocyte alterations in human HD. Astrocytic dysfunctions related to cellular morphology, extracellular ion and neurotransmitter homeostasis, and metabolic support all accompany the development and progression of HD, in both transgenic mouse and human cellular and chimeric models of HD. These findings reveal the potential for the therapeutic targeting of astrocytes so as to restore synaptic as well as tissue homeostasis in HD. Elucidation of the mechanisms by which astrocytes contribute to HD pathogenesis may inform a broader understanding of the role of glial pathology in neurodegenerative disorders and, by so doing, enable new strategies of glial-directed therapeutics.


Asunto(s)
Astrocitos , Enfermedad de Huntington , Animales , Humanos , Ratones , Astrocitos/metabolismo , Modelos Animales de Enfermedad , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Ratones Transgénicos , Neuroglía , Neuronas/metabolismo
18.
Glia ; 71(3): 524-540, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36334067

RESUMEN

Genomic analyses have revealed heterogeneity among glial progenitor cells (GPCs), but the compartment selectivity of human GPCs (hGPCs) is unclear. Here, we asked if GPCs of human grey and white brain matter are distinct in their architecture and associated gene expression. RNA profiling of NG2-defined hGPCs derived from adult human neocortex and white matter differed in their expression of genes involved in Wnt, NOTCH, BMP and TGFß signaling, suggesting compartment-selective biases in fate and self-renewal. White matter hGPCs over-expressed the BMP antagonists BAMBI and CHRDL1, suggesting their tonic suppression of astrocytic fate relative to cortical hGPCs, whose relative enrichment of cytoskeletal genes presaged their greater morphological complexity. In human glial chimeric mice, cortical hGPCs assumed larger and more complex morphologies than white matter hGPCs, and both were more complex than their mouse counterparts. These findings suggest that human grey and white matter GPCs comprise context-specific pools with distinct functional biases.


Asunto(s)
Sustancia Gris , Sustancia Blanca , Humanos , Adulto , Animales , Ratones , Sustancia Gris/metabolismo , Neuroglía/metabolismo , Células Madre/metabolismo , Astrocitos/metabolismo , Encéfalo/metabolismo , Sustancia Blanca/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Ojo/metabolismo , Proteínas del Tejido Nervioso/metabolismo
19.
Cell Rep Methods ; 2(10): 100302, 2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36313804

RESUMEN

Studying blood microcirculation is vital for gaining insights into vascular diseases. Blood flow imaging in deep tissue is currently achieved by acute administration of fluorescent dyes in the blood plasma. This is an invasive process, and the plasma fluorescence decreases within an hour of administration. Here, we report an approach for the longitudinal study of vasculature. Using a single intraperitoneal or intravenous administration of viral vectors, we express fluorescent secretory albumin-fusion proteins in the liver to chronically label the blood circulation in mice. This approach allows for longitudinal observation of circulation from 2 weeks to over 4 months after vector administration. We demonstrate the chronic assessment of vascular functions including functional hyperemia and vascular plasticity in micro- and mesoscopic scales. This genetic plasma labeling approach represents a versatile and cost-effective method for the chronic investigation of vasculature functions across the body in health and disease animal models.


Asunto(s)
Diagnóstico por Imagen , Hígado , Ratones , Animales , Microcirculación/fisiología , Estudios Longitudinales , Hígado/diagnóstico por imagen , Plasma
20.
Cell Rep ; 41(3): 111511, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36261010

RESUMEN

Glioblastoma (GBM) is characterized by extensive microvascular hyperproliferation. In addition to supplying blood to the tumor, GBM vessels also provide trophic support to glioma cells and serve as conduits for migration into the surrounding brain, promoting recurrence. Here, we enrich CD31-expressing glioma vascular cells (GVCs) and A2B5-expressing glioma tumor cells (GTCs) from primary GBM and use RNA sequencing to create a comprehensive molecular interaction map of the secreted and extracellular factors elaborated by GVCs that can interact with receptors and membrane molecules on GTCs. To validate our findings, we utilize functional assays, including a hydrogel-based migration assay and in vivo mouse models to demonstrate that one identified factor, the little-studied integrin binding sialoprotein (IBSP), enhances tumor growth and promotes the migration of GTCs along the vasculature. This perivascular niche interactome will serve as a resource to the research community in defining the potential functions of the GBM vasculature.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Animales , Ratones , Glioblastoma/patología , Sialoproteína de Unión a Integrina/metabolismo , Neoplasias Encefálicas/patología , Células Madre Neoplásicas/metabolismo , Glioma/patología , Movimiento Celular , Hidrogeles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA