Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
EMBO Rep ; 24(5): e55760, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36938994

RESUMEN

Mitochondria play central roles in cellular energy production and metabolism. Most proteins required to carry out these functions are synthesized in the cytosol and imported into mitochondria. A growing number of metabolic disorders arising from mitochondrial dysfunction can be traced to errors in mitochondrial protein import. The mechanisms underlying the import of precursor proteins are commonly studied using radioactively labeled precursor proteins imported into purified mitochondria. Here, we establish a fluorescence-based import assay to analyze protein import into mitochondria. We show that fluorescently labeled precursors enable import analysis with similar sensitivity to those using radioactive precursors, yet they provide the advantage of quantifying import with picomole resolution. We adapted the import assay to a 96-well plate format allowing for fast analysis in a screening-compatible format. Moreover, we show that fluorescently labeled precursors can be used to monitor the assembly of the F1 F0 ATP synthase in purified mitochondria. Thus, we provide a sensitive fluorescence-based import assay that enables quantitative and fast import analysis.


Asunto(s)
Mitocondrias , Precursores de Proteínas , Fluorescencia , Transporte de Proteínas , Precursores de Proteínas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo
2.
Cell ; 184(23): 5824-5837.e15, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34672953

RESUMEN

The human mitochondrial genome encodes thirteen core subunits of the oxidative phosphorylation system, and defects in mitochondrial gene expression lead to severe neuromuscular disorders. However, the mechanisms of mitochondrial gene expression remain poorly understood due to a lack of experimental approaches to analyze these processes. Here, we present an in vitro system to silence translation in purified mitochondria. In vitro import of chemically synthesized precursor-morpholino hybrids allows us to target translation of individual mitochondrial mRNAs. By applying this approach, we conclude that the bicistronic, overlapping ATP8/ATP6 transcript is translated through a single ribosome/mRNA engagement. We show that recruitment of COX1 assembly factors to translating ribosomes depends on nascent chain formation. By defining mRNA-specific interactomes for COX1 and COX2, we reveal an unexpected function of the cytosolic oncofetal IGF2BP1, an RNA-binding protein, in mitochondrial translation. Our data provide insight into mitochondrial translation and innovative strategies to investigate mitochondrial gene expression.


Asunto(s)
Regulación de la Expresión Génica , Silenciador del Gen , Genes Mitocondriales , Transporte de Electrón , Complejo IV de Transporte de Electrones/genética , Células HEK293 , Humanos , Proteínas Mitocondriales/metabolismo , Oligonucleótidos/química , Fosforilación Oxidativa , Biosíntesis de Proteínas , Subunidades de Proteína/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mitocondrial/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo
3.
Nat Commun ; 12(1): 5715, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34588454

RESUMEN

Nuclear-encoded mitochondrial proteins destined for the matrix have to be transported across two membranes. The TOM and TIM23 complexes facilitate the transport of precursor proteins with N-terminal targeting signals into the matrix. During transport, precursors are recognized by the TIM23 complex in the inner membrane for handover from the TOM complex. However, we have little knowledge on the organization of the TOM-TIM23 transition zone and on how precursor transfer between the translocases occurs. Here, we have designed a precursor protein that is stalled during matrix transport in a TOM-TIM23-spanning manner and enables purification of the translocation intermediate. Combining chemical cross-linking with mass spectrometric analyses and structural modeling allows us to map the molecular environment of the intermembrane space interface of TOM and TIM23 as well as the import motor interactions with amino acid resolution. Our analyses provide a framework for understanding presequence handover and translocation during matrix protein transport.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Precursores de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fraccionamiento Celular , Núcleo Celular/metabolismo , Reactivos de Enlaces Cruzados/química , Espectrometría de Masas/métodos , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/aislamiento & purificación , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/aislamiento & purificación , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Mutación Puntual , Unión Proteica/genética , Mapeo de Interacción de Proteínas/métodos , Precursores de Proteínas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación
4.
Int J Biol Macromol ; 171: 465-479, 2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33428952

RESUMEN

The ubiquitous nature of hemoglobins, their presence in multiple forms and low cellular expression in organisms suggests alternative physiological functions of hemoglobins in addition to oxygen transport and storage. Previous research has proposed enzymatic function of hemoglobins such as nitric oxide dioxygenase, nitrite reductase and hydroxylamine reductase. In all these enzymatic functions, active ferrous form of hemoglobin is converted to ferric form and reconversion of ferric to ferrous through reduction partners is under active investigation. The model alga C. reinhardtii contains multiple globins and is thus expected to have multiple putative methemoglobin reductases to augment the physiological functions of the novel hemoglobins. In this regard, three putative methemoglobin reductases and three algal hemoglobins were characterized. Our results signify that the identified putative methemoglobin reductases can reduce algal methemoglobins in a nonspecific manner under in vitro conditions. Enzyme kinetics of two putative methemoglobin reductases with methemoglobins as substrates and in silico analysis support interaction between the hemoglobins and the two reduction partners as also observed in vitro. Our investigation on algal methemoglobin reductases underpins the valuable chemistry of nitric oxide with the newly discovered hemoglobins to ensure their physiological relevance, with multiple hemoglobins probably necessitating the presence of multiple reductases.


Asunto(s)
Chlamydomonas reinhardtii/enzimología , Citocromo-B(5) Reductasa/fisiología , Oxigenasas/metabolismo , Proteínas de Plantas/fisiología , Hemoglobinas Truncadas/metabolismo , Técnicas de Química Analítica , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Secuencia Conservada , Citocromo-B(5) Reductasa/química , Citocromo-B(5) Reductasa/genética , Citocromo-B(5) Reductasa/aislamiento & purificación , Humanos , Cinética , Metahemoglobina/metabolismo , Modelos Moleculares , Simulación del Acoplamiento Molecular , Oxidación-Reducción , Proteínas de Plantas/aislamiento & purificación , Conformación Proteica , Dominios Proteicos , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Electricidad Estática , Especificidad por Sustrato , Hemoglobinas Truncadas/genética , Hemoglobinas Truncadas/aislamiento & purificación
5.
Curr Biol ; 30(6): 1119-1127.e5, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32142709

RESUMEN

In mitochondria, the carrier translocase (TIM22 complex) facilitates membrane insertion of multi-spanning proteins with internal targeting signals into the inner membrane [1-3]. Tom70, a subunit of TOM complex, represents the major receptor for these precursors [2, 4-6]. After transport across the outer membrane, the hydrophobic carriers engage with the small TIM protein complex composed of Tim9 and Tim10 for transport across the intermembrane space (IMS) toward the TIM22 complex [7-12]. Tim22 represents the pore-forming core unit of the complex [13, 14]. Only a small subset of TIM22 cargo molecules, containing four or six transmembrane spans, have been experimentally defined. Here, we used a tim22 temperature-conditional mutant to define the TIM22 substrate spectrum. Along with carrier-like cargo proteins, we identified subunits of the mitochondrial pyruvate carrier (MPC) as unconventional TIM22 cargos. MPC proteins represent substrates with atypical topology for this transport pathway. In agreement with this, a patient affected in TIM22 function displays reduced MPC levels. Our findings broaden the repertoire of carrier pathway substrates and challenge current concepts of TIM22-mediated transport processes.


Asunto(s)
Proteínas de Transporte de Membrana/genética , Proteínas Mitocondriales/genética , Transportadores de Ácidos Monocarboxílicos/genética , Ácido Pirúvico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Transporte Biológico , Células HEK293 , Humanos , Proteínas de Transporte de Membrana/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Nat Commun ; 9(1): 4028, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30279421

RESUMEN

The presequence translocase of the mitochondrial inner membrane (TIM23 complex) facilitates anterograde precursor transport into the matrix and lateral release of precursors with stop-transfer signal into the membrane (sorting). Sorting requires precursor exit from the translocation channel into the lipid phase through the lateral gate of the TIM23 complex. How the two transport modes are regulated and balanced against each other is unknown. Here we show that the import motor J-protein Pam18, which is essential for matrix import, controls lateral protein release into the lipid bilayer. Constitutively translocase-associated Pam18 obstructs lateral precursor transport. Concomitantly, Mgr2, implicated in precursor quality control, is displaced from the translocase. We conclude that during motor-dependent matrix protein transport, the transmembrane segment of Pam18 closes the lateral gate to promote anterograde polypeptide movement. This finding explains why a motor-free form of the translocase facilitates the lateral movement of precursors with a stop-transfer signal.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Levaduras
7.
Biochim Biophys Acta ; 1853(8): 1850-9, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25958336

RESUMEN

The translocase of the outer mitochondrial membrane (TOM complex) is the general entry gate into mitochondria for almost all imported proteins. A variety of specific receptors allow the TOM complex to recognize targeting signals of various precursor proteins that are transported along different import pathways. Aside from the well-characterized presequence receptors Tom20 and Tom22 a third TOM receptor, Tom70, binds proteins of the carrier family containing multiple transmembrane segments. Here we demonstrate that Tom70 directly binds to presequence peptides using a dedicated groove. A single point mutation in the cavity of this pocket (M551R) reduces the presequence binding affinity of Tom70 ten-fold and selectively impairs import of the presequence-containing precursor Mdl1 but not the ADP/ATP carrier (AAC). Hence Tom70 contributes to the presequence import pathway by recognition of the targeting signal of the Mdl1 precursor.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Dominios y Motivos de Interacción de Proteínas , Señales de Clasificación de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Secuencia de Aminoácidos , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Modelos Moleculares , Organismos Modificados Genéticamente , Unión Proteica/genética , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas/genética , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Señales de Clasificación de Proteína/genética , Estructura Secundaria de Proteína/genética , Transporte de Proteínas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA