Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38866433

RESUMEN

BACKGROUND AND PURPOSE: Intracranial epidermoid tumors (IET), temporal bone cholesteatomas (TBC), and head and neck epidermoid cysts (ECs) are typically slow-growing, benign conditions arising from ectodermal tissue. They exhibit increased signal on diffusion-weighted imaging (DWI). While much of the imaging literature describes these lesions as showing diffusion restriction, we aimed to investigate these qualitative signal intensities and interpretations of restricted diffusion with respect to normal brain structures. This study aims to quantitatively evaluate the apparent diffusion coefficient (ADC) values and histogram features of these lesions. MATERIALS AND METHODS: This retrospective study included children with histologically confirmed IET, TBC, or EC diagnoses. Lesions were segmented, and voxel-wise calculation of ADC values was performed along with histogram analysis. ADC calculations were validated with a second analysis software to ensure accuracy. Normal brain regions of interest-including the cerebellum, white matter, and thalamus-served as normal comparators. Correlational analysis and Bland-Altman plots assessed agreement between software for ADC calculations. Differences in the distribution of values between the lesions and normal brain tissues were assessed using Wilcoxon rank sum and Kruskal-Wallis tests. RESULTS: Forty-eight pathology-proven cases were included in this study. Among them, 13(27.1%) patients had IET, 14(29.2%) had EC, and 21(43.7%) had TBC. The mean age was 8.67±5.30, and 27(52.9%) were female. The intraclass correlation for absolute agreement for lesional ADC between the two software was 0.997(95%CI=0.995-0.998). The IET, EC, and TBC median ADC values were not significantly different (973.7vs.875.7vs.933.2 x10-6 mm2/s, p=0.265). However, the ADCs of the three types of lesions were higher than those of three normal brain tissue types (933vs.766, x10-6 mm2/s, p<0.0001). CONCLUSIONS: The ADC values of IET, TBC, and EC are higher than those of normal brain regions. It is not accurate to simply classify these lesions as exhibiting restricted diffusion or reduced diffusivity without considering the tissue used for comparison. The observed hyperintensity on DWI compared to the brain is likely attributable a relative higher contribution of T2 shine-through effect. ABBREVIATIONS: TBC= Temporal Bone Cholesteatomas; IE= Intracranial Epidermoid; EC= Head and Neck Epidermal Inclusion cysts; DWI= Diffusion-Weighted Imaging; ADC= Apparent Diffusion Coefficient.

2.
Neuroradiology ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902483

RESUMEN

PURPOSE: Pediatric spinal cord gliomas (PSGs) are rare in children and few reports detail their imaging features. We tested the association of tumoral grade with imaging features and proposed a novel approach to categorize post-contrast enhancement patterns in PSGs. METHODS: This single-center, retrospective study included patients <21 years of age with preoperative spinal MRI and confirmed pathological diagnosis of PSG from 2000-2022. Tumors were classified using the 5th edition of the WHO CNS Tumors Classification. Two radiologists reviewed multiple imaging features, and classified enhancement patterns using a novel approach. Fisher's exact test determined associations between imaging and histological features. RESULTS: Forty-one PSGs were reviewed. Thirty-four were intramedullary, and seven were extramedullary. Pilocytic astrocytoma was the most common tumor (39.02%). Pain and weakness were the most prevalent symptoms. Seven patients (17.07%) died. Cyst, syringomyelia, and leptomeningeal enhancement were associated with tumor grade. Widening of the spinal canal was observed only in low-grade astrocytomas. There was a significant association between tumor grade and contrast enhancement pattern. Specifically, low-grade PSGs were more likely to exhibit type 1A enhancement (mass-like, with well-defined enhancing margins) and less likely to exhibit type 1B enhancement (mass-like, with ill-defined enhancing margins). CONCLUSION: PSGs display overlapping imaging features, making grade differentiation challenging based solely on imaging. The correlation between tumor grade and contrast enhancement patterns suggests a potential diagnostic avenue, requiring further validation with larger, multicenter studies. Furthermore, Low-grade PSGs display cysts and syringomyelia more frequently, and leptomeningeal enhancement is less common.

3.
Neuroradiology ; 66(5): 677-698, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38466393

RESUMEN

PURPOSE: This article is the first in a two-part series designed to provide a comprehensive overview of the range of supratentorial intraventricular masses observed in children. Our primary objective is to discuss the diverse types of intraventricular masses that originate not only from cells within the choroid plexus but also from other sources. METHODS: In this article, we review relevant epidemiological data, the current genetics/molecular classification as outlined in the fifth edition of the World Health Organization's Classification of tumours of the Central Nervous System and noteworthy imaging findings. We conduct an exhaustive analysis of primary choroid plexus tumours as well as other conditions such as choroid plexus hyperplasia, choroid plexus cyst, choroid plexus xanthogranuloma, atypical teratoid rhabdoid tumour, meningioma, arteriovenous malformation and metastasis. RESULTS: We comprehensively evaluated each supratentorial intraventricular mass, providing an in-depth analysis of their unique clinical and histological characteristics. The fifth edition of the World Health Organization Classification of Tumours of the Central Nervous System introduces major modifications. These important changes could potentially have a profound impact on the management strategies and subsequent outcomes of these tumours. CONCLUSION: Intraventricular masses in children can arise from various sources. Surgical intervention is key for certain supratentorial intraventricular masses in paediatric patients, with preoperative neuroimaging essential to decide the best treatment approach, surgical or otherwise, as some cases may not require surgery.


Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Neoplasias del Plexo Coroideo , Neoplasias Meníngeas , Humanos , Niño , Neoplasias del Plexo Coroideo/patología , Neuroimagen
4.
AJNR Am J Neuroradiol ; 45(4): 483-487, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331958

RESUMEN

Polymorphous low-grade neuroepithelial tumors of the young (PLNTY) are rare brain tumors first described in 2017 and recently included in the 2021 5th World Health Organization Classification of Tumors of the Central Nervous System. They typically affect children and young adults. Few pediatric cases have been reported in the literature. The most common imaging features described, include location within the temporal lobe, involvement of the cortical/subcortical region, coarse calcifications, and well-defined margins with solid and cystic morphology, with slight-or-no enhancement. However, there is limited information on imaging features in children. We present the imaging spectrum of neuroimaging features in a series of pediatric patients with a histologically and molecularly proved PLNTY diagnosis. Coarse calcifications are uncommon in children compared with the adult literature, and they may develop with time. The transmantle-like sign can be observed, and adjacent cortical dysplasia may be seen. Seizure recurrence may occur despite gross total resection of the tumor.


Asunto(s)
Neoplasias Encefálicas , Calcinosis , Neoplasias Neuroepiteliales , Adulto Joven , Humanos , Niño , Neoplasias Neuroepiteliales/diagnóstico por imagen , Neoplasias Neuroepiteliales/patología , Neoplasias Encefálicas/patología , Convulsiones , Neuroimagen , Sistema Nervioso Central
5.
Neuroradiology ; 66(5): 699-716, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38085360

RESUMEN

PURPOSE: This article is the second in a two-part series aimed at exploring the spectrum of supratentorial intraventricular masses in children. In particular, this part delves into masses originating from cells of the ventricular lining, those within the septum pellucidum, and brain parenchyma cells extending into the ventricles. The aim of this series is to offer a comprehensive understanding of these supratentorial intraventricular masses, encompassing their primary clinical findings and histological definitions. METHODS: We conducted a review and analysis of relevant epidemiological data, the current genetics/molecular classifications as per the fifth edition of the World Health Organization (WHO) Classification of Tumors of the Central Nervous System (WHO CNS5), and imaging findings. Each supratentorial intraventricular mass was individually evaluated, with a detailed discussion on its clinical and histological features. RESULTS: This article covers a range of supratentorial intraventricular masses observed in children. These include colloid cysts, subependymal giant cell astrocytomas, ependymomas, gangliogliomas, myxoid glioneuronal tumors, central neurocytomas, high-grade gliomas, pilocytic astrocytomas, cavernous malformations, and other embryonal tumors. Each mass type is characterized both clinically and histologically, offering an in-depth review of their individual imaging characteristics. CONCLUSION: The WHO CNS5 introduces notable changes, emphasizing the vital importance of molecular diagnostics in classifying pediatric central nervous system tumors. These foundational shifts have significant potential to impact management strategies and, as a result, the outcomes of intraventricular masses in children.

7.
Br J Neurosurg ; 37(5): 986-999, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33960863

RESUMEN

Lesions of the paediatric cranial vault are diverse both in their presentation and aetiology. As such, they pose a diagnostic challenge to the paediatric neurosurgeon and neuroradiologist. In this article, we delineate the spectrum of paediatric calvarial pathology into four distinct groups: (1) lytic lesion(s); (2) focal sclerotic lesion(s); (3) diffuse cranial vault sclerosis; and (4) abnormal shape of the cranial vault. It is our aim that this more pragmatic, algorithmic approach may mitigate diagnostic uncertainty and aid the more accurate diagnosis of paediatric calvarial lesions.


Asunto(s)
Craneosinostosis , Niño , Humanos , Lactante , Craneosinostosis/patología , Craneosinostosis/cirugía , Cráneo/diagnóstico por imagen , Cráneo/cirugía
8.
Ultrasound Int Open ; 8(2): E43-E52, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36408372

RESUMEN

Purpose Neurosonography evaluation of neonatal hypoxic-ischemic encephalopathy (HIE) is mainly qualitative. We aimed to quantitatively compare the echogenicity of several brain regions in patients with HIE to healthy controls. Materials and Methods 20 term neonates with clinical/MRI evidence of HIE and 20 term healthy neonates were evaluated. Seven brain regions were assessed [frontal, parietal, occipital, and perirolandic white matter (WM), caudate nucleus head, lentiform nucleus, and thalamus]. The echogenicity of the calvarial bones (bone) and the choroid plexus (CP) was used for ratio calculation. Differences in the ratios were determined between neonates with HIE and controls. Results Ratios were significantly higher for HIE neonates in each region (p<0.05). The differences were greatest for the perirolandic WM, with CP and bone ratios being 0.23 and 0.22 greater, respectively, for the HIE compared to the healthy neonates (p<0.001). The perirolandic WM had a high AUC, at 0.980 for both the CP and bone ratios. The intra-observer reliability for all ratios was high, with the caudate to bone ratio being the lowest at 0.832 and the anterior WM to CP ratio being the highest at 0.992. Conclusion When coupled with internal controls, quantitative neurosonography represents a potential tool to identify early neonatal HIE changes. Larger cohort studies could reveal whether a quantitative approach can discern between degrees of severity of HIE. Future neurosonography protocols should be tailored to evaluate the perirolandic region, which requires posterior coronal scanning.

9.
Pediatr Radiol ; 52(13): 2595-2609, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35798974

RESUMEN

BACKGROUND: Medulloblastoma, a high-grade embryonal tumor, is the most common primary brain malignancy in the pediatric population. Molecular medulloblastoma groups have documented clinically and biologically relevant characteristics. Several authors have attempted to differentiate medulloblastoma molecular groups and histology variants using diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) maps. However, literature on the use of ADC histogram analysis in medulloblastomas is still scarce. OBJECTIVE: This study presents data from a sizable group of pediatric patients with medulloblastoma from a single institution to determine the performance of ADC histogram metrics for differentiating medulloblastoma variants and groups based on both histological and molecular features. MATERIALS AND METHODS: In this retrospective study, we evaluated the distribution of absolute and normalized ADC values of medulloblastomas. Tumors were manually segmented and diffusivity metrics calculated on a pixel-by-pixel basis. We calculated a variety of first-order histogram metrics from the ADC maps, including entropy, minimum, 10th percentile, 90th percentile, maximum, mean, median, skewness and kurtosis, to differentiate molecular and histological variants. ADC values of the tumors were also normalized to the bilateral cerebellar cortex and thalami. We used the Kruskal-Wallis and Mann-Whitney U tests to evaluate differences between the groups. We carried out receiver operating characteristic (ROC) curve analysis to evaluate the areas under the curves and to determine the cut-off values for differentiating tumor groups. RESULTS: We found 65 children with confirmed histopathological diagnosis of medulloblastoma. Mean age was 8.3 ± 5.8 years, and 60% (n = 39) were male. One child was excluded because histopathological variant could not be determined. In terms of medulloblastoma variants, tumors were classified as classic (n = 47), desmoplastic/nodular (n = 9), large/cell anaplastic (n = 6) or as having extensive nodularity (n = 2). Seven other children were excluded from the study because of incomplete imaging or equivocal molecular diagnosis. Regarding medulloblastoma molecular groups, there were: wingless (WNT) group (n = 7), sonic hedgehog (SHH) group (n = 14) and non-WNT/non-SHH (n = 36). Our results showed significant differences among the molecular groups in terms of the median (P = 0.002), mean (P = 0.003) and 90th percentile (P = 0.002) ADC histogram metrics. No significant differences among the various medulloblastoma histological variants were found. CONCLUSION: ADC histogram analysis can be implemented as a complementary tool in the preoperative evaluation of medulloblastoma in children. This technique can provide valuable information for differentiating among medulloblastoma molecular groups. ADC histogram metrics can help predict medulloblastoma molecular classification preoperatively.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Humanos , Niño , Masculino , Preescolar , Adolescente , Femenino , Meduloblastoma/diagnóstico por imagen , Meduloblastoma/patología , Estudios Retrospectivos , Diagnóstico Diferencial , Proteínas Hedgehog , Imagen de Difusión por Resonancia Magnética/métodos , Neoplasias Cerebelosas/diagnóstico por imagen
10.
Clin Neuroradiol ; 32(4): 1097-1108, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35674799

RESUMEN

PURPOSE: This study aimed to evaluate the application of apparent diffusion coefficient (ADC) histogram analysis to differentiate posterior fossa tumors (PFTs) in children. METHODS: A total of 175 pediatric patients with PFT, including 75 pilocytic astrocytomas (PA), 59 medulloblastomas, 16 ependymomas, and 13 atypical teratoid rhabdoid tumors (ATRT), were analyzed. Tumors were visually assessed using DWI trace and conventional MRI images and manually segmented and post-processed using parametric software (pMRI). Furthermore, tumor ADC values were normalized to the thalamus and cerebellar cortex. The following histogram metrics were obtained: entropy, minimum, 10th, and 90th percentiles, maximum, mean, median, skewness, and kurtosis to distinguish the different types of tumors. Kruskal Wallis and Mann-Whitney U tests were used to evaluate the differences. Finally, receiver operating characteristic (ROC) curves were utilized to determine the optimal cut-off values for differentiating the various PFTs. RESULTS: Most ADC histogram metrics showed significant differences between PFTs (p < 0.001) except for entropy, skewness, and kurtosis. There were significant pairwise differences in ADC metrics for PA versus medulloblastoma, PA versus ependymoma, PA versus ATRT, medulloblastoma versus ependymoma, and ependymoma versus ATRT (all p < 0.05). Our results showed no significant differences between medulloblastoma and ATRT. Normalized ADC data showed similar results to the absolute ADC value analysis. ROC curve analysis for normalized ADCmedian values to thalamus showed 94.9% sensitivity (95% CI: 85-100%) and 93.3% specificity (95% CI: 87-100%) for differentiating medulloblastoma from ependymoma. CONCLUSION: ADC histogram metrics can be applied to differentiate most types of posterior fossa tumors in children.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Neoplasias Cerebelosas , Ependimoma , Neoplasias Infratentoriales , Meduloblastoma , Tumor Rabdoide , Niño , Humanos , Estudios Retrospectivos , Diagnóstico Diferencial , Neoplasias Infratentoriales/diagnóstico por imagen , Neoplasias Infratentoriales/patología , Imagen de Difusión por Resonancia Magnética/métodos , Astrocitoma/patología , Meduloblastoma/diagnóstico por imagen , Ependimoma/diagnóstico por imagen , Ependimoma/patología , Neoplasias Encefálicas/patología , Tumor Rabdoide/diagnóstico por imagen , Neoplasias Cerebelosas/diagnóstico por imagen
12.
Neuroradiol J ; 35(2): 226-232, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34423669

RESUMEN

PURPOSE: To create a voxel-based map of the inter-arterial watershed derived from children who have sustained a hypoxic-ischemic injury involving this region at term. MATERIALS AND METHODS: Patients 0-18 years of age diagnosed with a hypoxic-ischemic injury of the watershed on magnetic resonance imaging (MRI) were included. Two pediatric neuroradiologists segmented the lesions as visualized on the T2-weighted sequence. All lesion maps were normalized to a brain template and overlapped to create a frequency map in order to highlight the frequency of involvement of portions of the cortical watershed. RESULTS: A total of 47 patients (35 boys) were included in the final sample. Their mean age was 7.6 ± 3.6 years. The cortical watershed was successfully mapped. Three watershed regions were defined: the anterior, peri-Sylvian, and posterior watershed zones. The anterior and peri-Sylvian watershed zones are connected through the involvement of the middle frontal gyrus. The peri-Sylvian and the posterior watershed zones are connected through the involvement of the inferior parietal lobule, the posterior aspect of the superior temporal gyrus, and the angular gyrus with the occipital lobe. The temporal lobe and orbital part of the frontal lobe are largely spared in all patients. CONCLUSION: A voxel-based lesion map of children with watershed hypoxic ischemic injury at term was created and three inter-arterial watershed zones defined: anterior, peri-Sylvian, and posterior watersheds.


Asunto(s)
Mapeo Encefálico , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Niño , Preescolar , Lóbulo Frontal/patología , Humanos , Masculino , Lóbulo Parietal
13.
Cerebellum ; 21(1): 116-131, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34052969

RESUMEN

Evaluation of ataxia in children is challenging in clinical practice. This is particularly true for highly heterogeneous conditions such as primary mitochondrial disorders (PMD). This study aims to explore cerebellar and brain abnormalities identified on MRI as potential predictors of ataxia in patients with PMD and, likewise, to determine the effect of the patient's genetic profile on these predictors as well as determination of the temporal relationship of clinical ataxia with MRI findings. We evaluated clinical, radiological, and genetic characteristics of 111 PMD patients younger than 21 years of age at The Children's Hospital of Philadelphia. Data was extracted from charts. Blinded radiological evaluations were carried out by experienced neuroradiologists. Multivariate logistic regression and generalized equation estimates were used for analysis. Ataxia was identified in 41% of patients. Cerebellar atrophy or putaminal involvement with mitochondrial DNA (mtDNA) mutations (OR 1.18, 95% CI 1.1-1.3, p < 0.001) and nuclear DNA mutation with no atrophy of the cerebellum (OR 1.14, 95% CI 1.0-1.3, p = 0.007) predicted an increased likelihood of having ataxia per year of age. Central tegmental tract predicted the presence of ataxia independent of age and pathogenic variant origin (OR 9.8, 95% CI 2-74, p = 0.009). Ataxia tended to precede the imaging finding of cerebellar atrophy. Cerebellar atrophy and putaminal involvement on MRI of pediatric-onset PMD may predict the presence of ataxia with age in patients with mtDNA mutations. This study provides predicted probabilities of having ataxia per year of age that may help in family counseling and future research of the population.


Asunto(s)
Ataxia Cerebelosa , Enfermedades Mitocondriales , Atrofia/patología , Ataxia Cerebelosa/genética , Cerebelo/diagnóstico por imagen , Cerebelo/patología , Niño , Humanos , Imagen por Resonancia Magnética/métodos , Enfermedades Mitocondriales/diagnóstico por imagen , Enfermedades Mitocondriales/genética
14.
Front Neurol ; 12: 733323, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858308

RESUMEN

The shortly upcoming 5th edition of the World Health Organization Classification of Tumors of the Central Nervous System is bringing extensive changes in the terminology of diffuse high-grade gliomas (DHGGs). Previously "glioblastoma," as a descriptive entity, could have been applied to classify some tumors from the family of pediatric or adult DHGGs. However, now the term "glioblastoma" has been divested and is no longer applied to tumors in the family of pediatric types of DHGGs. As an entity, glioblastoma remains, however, in the family of adult types of diffuse gliomas under the insignia of "glioblastoma, IDH-wildtype." Of note, glioblastomas still can be detected in children when glioblastoma, IDH-wildtype is found in this population, despite being much more common in adults. Despite the separation from the family of pediatric types of DHGGs, what was previously labeled as "pediatric glioblastomas" still remains with novel labels and as new entities. As a result of advances in molecular biology, most of the previously called "pediatric glioblastomas" are now classified in one of the four family members of pediatric types of DHGGs. In this review, the term glioblastoma is still apocryphally employed mainly due to its historical relevance and the paucity of recent literature dealing with the recently described new entities. Therefore, "glioblastoma" is used here as an umbrella term in the attempt to encompass multiple entities such as astrocytoma, IDH-mutant (grade 4); glioblastoma, IDH-wildtype; diffuse hemispheric glioma, H3 G34-mutant; diffuse pediatric-type high-grade glioma, H3-wildtype and IDH-wildtype; and high grade infant-type hemispheric glioma. Glioblastomas are highly aggressive neoplasms. They may arise anywhere in the developing central nervous system, including the spinal cord. Signs and symptoms are non-specific, typically of short duration, and usually derived from increased intracranial pressure or seizure. Localized symptoms may also occur. The standard of care of "pediatric glioblastomas" is not well-established, typically composed of surgery with maximal safe tumor resection. Subsequent chemoradiation is recommended if the patient is older than 3 years. If younger than 3 years, surgery is followed by chemotherapy. In general, "pediatric glioblastomas" also have a poor prognosis despite surgery and adjuvant therapy. Magnetic resonance imaging (MRI) is the imaging modality of choice for the evaluation of glioblastomas. In addition to the typical conventional MRI features, i.e., highly heterogeneous invasive masses with indistinct borders, mass effect on surrounding structures, and a variable degree of enhancement, the lesions may show restricted diffusion in the solid components, hemorrhage, and increased perfusion, reflecting increased vascularity and angiogenesis. In addition, magnetic resonance spectroscopy has proven helpful in pre- and postsurgical evaluation. Lastly, we will refer to new MRI techniques, which have already been applied in evaluating adult glioblastomas, with promising results, yet not widely utilized in children.

15.
Neuroradiology ; 63(1): 141-145, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33001220

RESUMEN

The authors present a case of acute disseminated encephalomyelitis in a COVID-19 pediatric patient with positive SARS-CoV2 markers from a nasopharyngeal swab. A previously healthy 12-year-old-girl presented with a skin rash, headache, and fever. Five days after that, she had an acute, progressive, bilateral, and symmetrical motor weakness. She evolved to respiratory failure. Magnetic resonance imaging (MRI) of the brain and cervical spine showed extensive bilateral and symmetric restricted diffusion involving the subcortical and deep white matter, a focal hyperintense T2/FLAIR lesion in the splenium of the corpus callosum with restricted diffusion, and extensive cervical myelopathy involving both white and gray matter. Follow-up examinations of the brain and spine were performed 30 days after the first MRI examination. The images of the brain demonstrated mild dilatation of the lateral ventricles and widespread widening of the cerebral sulci, complete resolution of the extensive white matter restricted diffusion, and complete resolution of the restricted diffusion in the lesion of the splenium of the corpus callosum, leaving behind a small gliotic focus. The follow-up examination of the spine demonstrated nearly complete resolution of the extensive signal changes in the spinal cord, leaving behind scattered signal changes in keeping with gliosis. She evolved with partial clinical and neurological improvement and was subsequently discharged.


Asunto(s)
COVID-19/complicaciones , Encefalomielitis Aguda Diseminada/etiología , Niño , Encefalomielitis Aguda Diseminada/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética
16.
Pediatr Radiol ; 51(3): 353-370, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33026469

RESUMEN

Neurosonography is an essential imaging modality for assessing the neonatal brain, particularly as a screening tool to evaluate intracranial hemorrhage, hydrocephalus and periventricular leukomalacia. The primary advantages of neurosonography include portability, accessibility and lack of ionizing radiation. Its main limitations are intrinsic operator dependence and the need for an open fontanelle. Neurosonographic imaging acquisition is typically performed by placing a sector transducer over the anterior fontanelle and following sagittal and coronal sweeps. The sensitivity of neurosonography has markedly improved thanks to the adoption of modern imaging equipment, the use of dedicated head probes, and the employment of advanced diagnostic US techniques. These developments have facilitated more descriptive identification of specific cerebral anatomical details, improving understanding of the cerebral anatomy by conventional US. Such knowledge is fundamental for enhanced diagnostic sensitivity and is a key to understanding pathological states. Furthermore, familiarity with normal anatomy is crucial for understanding pathological states. Our primary goal in this review was to supplement these technological developments with a roadmap to the cerebral landscape. We accomplish this by presenting a systematic approach to using routine US for consistent identification of the most crucial cerebral landmarks, reviewing their relationship with adjacent structures, and briefly describing their primary function.


Asunto(s)
Cerebro , Hidrocefalia , Leucomalacia Periventricular , Encéfalo , Humanos , Recién Nacido
17.
Radiographics ; 40(7): 2042-2067, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33136487

RESUMEN

Primary mitochondrial disorders (PMDs) constitute the most common cause of inborn errors of metabolism in children, and they frequently affect the central nervous system. Neuroimaging findings of PMDs are variable, ranging from unremarkable and nonspecific to florid and highly suggestive. An overview of PMDs, including a synopsis of the basic genetic concepts, main clinical symptoms, and neuropathologic features, is presented. In addition, eight of the most common PMDs that have a characteristic imaging phenotype in children are reviewed in detail. Online supplemental material is available for this article. ©RSNA, 2020.


Asunto(s)
Enfermedades del Sistema Nervioso Central/diagnóstico por imagen , Enfermedades Mitocondriales/diagnóstico por imagen , Neuroimagen/métodos , Niño , Diagnóstico Diferencial , Humanos , Fenotipo
18.
Front Pediatr ; 8: 576489, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33102411

RESUMEN

Rationale and Objectives: To compare cerebral pulsed arterial spin labeling (PASL) perfusion among controls, hypoxic ischemic encephalopathy (HIE) neonates with normal conventional MRI(HIE/MRI⊕), and HIE neonates with abnormal conventional MRI(HIE/MRI⊖). To create a predictive machine learning model of neurodevelopmental outcomes using cerebral PASL perfusion. Materials and Methods: A total of 73 full-term neonates were evaluated. The cerebral perfusion values were compared by permutation test to identify brain regions with significant perfusion changes among 18 controls, 40 HIE/MRI⊖ patients, and 15 HIE/MRI⊕ patients. A machine learning model was developed to predict neurodevelopmental outcomes using the averaged perfusion in those identified brain regions. Results: Significantly decreased PASL perfusion in HIE/MRI⊖ group, when compared with controls, were found in the anterior corona radiata, caudate, superior frontal gyrus, precentral gyrus. Both significantly increased and decreased cerebral perfusion changes were detected in HIE/MRI⊕ group, when compared with HIE/MRI⊖ group. There were no significant perfusion differences in the cerebellum, brainstem and deep structures of thalamus, putamen, and globus pallidus among the three groups. The machine learning model demonstrated significant correlation (p < 0.05) in predicting language(r = 0.48) and motor(r = 0.57) outcomes in HIE/MRI⊖ patients, and predicting language(r = 0.76), and motor(r = 0.53) outcomes in an additional group combining HIE/MRI⊖ and HIE/MRI⊕. Conclusion: Perfusion MRI can play an essential role in detecting HIE regardless of findings on conventional MRI and predicting language and motor outcomes in HIE survivors. The perfusion changes may also reveal important insights into the reperfusion response and intrinsic autoregulatory mechanisms. Our results suggest that perfusion imaging may be a useful adjunct to conventional MRI in the evaluation of HIE in clinical practice.

19.
Pediatr Radiol ; 50(10): 1424-1447, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32734340

RESUMEN

This article is the first of a two-part series on intracranial calcification in childhood. Intracranial calcification can be either physiological or pathological. Physiological intracranial calcification is not an expected neuroimaging finding in the neonatal or infantile period but occurs, as children grow older, in the pineal gland, habenula, choroid plexus and occasionally the dura mater. Pathological intracranial calcification can be broadly divided into infectious, congenital, endocrine/metabolic, vascular and neoplastic. The main goals in Part 1 are to discuss the chief differences between physiological and pathological intracranial calcification, to discuss the histological characteristics of intracranial calcification and how intracranial calcification can be detected across neuroimaging modalities, to emphasize the importance of age at presentation and intracranial calcification location, and to propose a comprehensive neuroimaging approach toward the differential diagnosis of the causes of intracranial calcification. Finally, in Part 1 the authors discuss the most common causes of infectious intracranial calcification, especially in the neonatal period, and congenital causes of intracranial calcification. Various neuroimaging modalities have distinct utilities and sensitivities in the depiction of intracranial calcification. Age at presentation, intracranial calcification location, and associated neuroimaging findings are useful information to help narrow the differential diagnosis of intracranial calcification. Intracranial calcification can occur in isolation or in association with other neuroimaging features. Intracranial calcification in congenital infections has been associated with clastic changes, hydrocephalus, chorioretinitis, white matter abnormalities, skull changes and malformations of cortical development. Infections are common causes of intracranial calcification, especially neonatal TORCH (toxoplasmosis, other [syphilis, varicella-zoster, parvovirus B19], rubella, cytomegalovirus and herpes) infections.


Asunto(s)
Encefalopatías/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Calcificación Fisiológica , Calcinosis/diagnóstico por imagen , Neuroimagen/métodos , Niño , Preescolar , Humanos , Lactante , Recién Nacido
20.
Pediatr Radiol ; 50(10): 1448-1475, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32642802

RESUMEN

This article is the second of a two-part series on intracranial calcification in childhood. In Part 1, the authors discussed the main differences between physiological and pathological intracranial calcification. They also outlined histological intracranial calcification characteristics and how these can be detected across different neuroimaging modalities. Part 1 emphasized the importance of age at presentation and intracranial calcification location and proposed a comprehensive neuroimaging approach toward the differential diagnosis of the causes of intracranial calcification. Pathological intracranial calcification can be divided into infectious, congenital, endocrine/metabolic, vascular, and neoplastic. In Part 2, the chief focus is on discussing endocrine/metabolic, vascular, and neoplastic intracranial calcification etiologies of intracranial calcification. Endocrine/metabolic diseases causing intracranial calcification are mainly from parathyroid and thyroid dysfunction and inborn errors of metabolism, such as mitochondrial disorders (MELAS, or mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes; Kearns-Sayre; and Cockayne syndromes), interferonopathies (Aicardi-Goutières syndrome), and lysosomal disorders (Krabbe disease). Specific noninfectious causes of intracranial calcification that mimic TORCH (toxoplasmosis, other [syphilis, varicella-zoster, parvovirus B19], rubella, cytomegalovirus, and herpes) infections are known as pseudo-TORCH. Cavernous malformations, arteriovenous malformations, arteriovenous fistulas, and chronic venous hypertension are also known causes of intracranial calcification. Other vascular-related causes of intracranial calcification include early atherosclerosis presentation (children with risk factors such as hyperhomocysteinemia, familial hypercholesterolemia, and others), healed hematoma, radiotherapy treatment, old infarct, and disorders of the microvasculature such as COL4A1- and COL4A2-related diseases. Intracranial calcification is also seen in several pediatric brain tumors. Clinical and familial information such as age at presentation, maternal exposure to teratogens including viruses, and association with chromosomal abnormalities, pathogenic genes, and postnatal infections facilitates narrowing the differential diagnosis of the multiple causes of intracranial calcification.


Asunto(s)
Encefalopatías/diagnóstico por imagen , Encefalopatías/etiología , Calcinosis/diagnóstico por imagen , Calcinosis/etiología , Neuroimagen/métodos , Niño , Preescolar , Humanos , Lactante , Recién Nacido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA