Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 29(51): 77188-77198, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35675011

RESUMEN

Mesoporous carbon (MC) derived from cassava starch was used to remove Acid Blue 113 azo dye from aqueous solutions. The influence of temperature, pH, ionic strength, and the adsorbent dose was investigated in a set of batch experiments. Experimental data showed that Acid Blue 113 adsorption was higher in the acid pH range than in the alkaline one, that dye adsorption increases when the ionic strength and temperature increase, and that adsorption results presented a good correlation with the Langmuir isotherm model. The adsorption capacity of MC was 295 mg g-1, at pH = 7.0 and 298 K, respectively. Zeta potential (ζ) showed the compression of the diffuse double layer of adsorbent with an increase in temperature and ionic strength, promoting the decrease of electrostatic repulsion between the negatively charged surface of the carbon particles and the anionic dye. Thermodynamic results demonstrate that the adsorption process was spontaneous and endothermic. Moreover, for the first time, this work has demonstrated that the pH, temperature, and ionic strength of the aqueous medium are also able to change the surface charge of carbon-based adsorbents and surely influence the adsorption capacity. Finally, the regeneration of the adsorbent by the photo-Fenton reaction regenerated the adsorption capacity of the adsorbent without generating secondary pollution to the environment.


Asunto(s)
Carbono , Contaminantes Químicos del Agua , Adsorción , Temperatura , Compuestos Azo , Concentración Osmolar , Agua , Concentración de Iones de Hidrógeno , Almidón , Cinética
2.
J Hazard Mater ; 413: 125388, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33930955

RESUMEN

The catalytic activity of layered double hydroxides, with and without insertion of copper, was evaluated in a heterogeneous Fenton process for degradation of the antibiotic sulfathiazole (STZ). The characterizations with different techniques revealed lamellar structures formed by stacking of layers containing magnesium, iron, and copper cations. The insertion of copper in the lamellar structure increased the specific area of the material and the degradation kinetics, achieving complete STZ removal after 90 min. X-ray photoelectron spectroscopy analysis showed the presence of Cu(II) and Cu(I) surface sites, which contributed to the generation of hydroxyl and hydroperoxyl/superoxide radicals. It also indicated an increase of Cu(I) content after use. For both materials, but specially for LDH without copper, addition of tert-butyl alcohol and p-benzoquinone hindered STZ degradation, indicating the importance of hydroxyl and hydroperoxyl/superoxide radicals in the degradation process, respectively. These results demonstrated the potential of copper-modified MgFe-CO3 as a catalyst for the degradation of emerging contaminants, offering the benefits of easy preparation and high efficiency in the Fenton process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA