Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
PLoS One ; 19(7): e0304997, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38968257

RESUMEN

Toll-like receptors (TLRs) are key players in the innate immune system. Despite the great efforts in TLR structural biology, today we know the spatial structures of only four human TLR intracellular TIR domains. All of them belong to one of five subfamilies of receptors. One of the main bottlenecks is the high-level production of correctly folded proteins in soluble form. Here we used a rational approach to find the optimal parameters to produce TIR domains of all ten human TLR family members in soluble form in E. coli cells. We showed that dozens of milligrams of soluble His-tagged TLR2/3/6/7TIR and MBP-tagged TLR3/5/7/8TIR can be produced. We also developed the purification protocols and demonstrated by CD and NMR spectroscopy that purified TLR2/3/7TIR demonstrate a structural organization inherent to TIR domains. This illustrates the correct folding of produced proteins and their suitability for further structural and functional investigations.


Asunto(s)
Dominios Proteicos , Receptores Toll-Like , Humanos , Receptores Toll-Like/metabolismo , Receptores Toll-Like/química , Escherichia coli/metabolismo , Escherichia coli/genética , Pliegue de Proteína
2.
Commun Biol ; 7(1): 799, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956304

RESUMEN

In this paper, we propose a fluorescence-lifetime imaging microscopy (FLIM) multiplexing system based on the fluorogen-activating protein FAST. This genetically encoded fluorescent labeling platform employs FAST mutants that activate the same fluorogen but provide different fluorescence lifetimes for each specific protein-dye pair. All the proposed probes with varying lifetimes possess nearly identical and the smallest-in-class size, along with quite similar steady-state optical properties. In live mammalian cells, we target these chemogenetic tags to two intracellular structures simultaneously, where their fluorescence signals are clearly distinguished by FLIM. Due to the unique structure of certain fluorogens under study, their complexes with FAST mutants display a monophasic fluorescence decay, which may facilitate enhanced multiplexing efficiency by reducing signal cross-talks and providing optimal prerequisites for signal separation upon co-localized and/or spatially overlapped labeling.


Asunto(s)
Colorantes Fluorescentes , Microscopía Fluorescente , Microscopía Fluorescente/métodos , Colorantes Fluorescentes/química , Humanos , Animales , Fluorescencia , Mutación
3.
Biol Psychiatry ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945387

RESUMEN

BACKGROUND: Diverse antidepressants were recently described to bind to TrkB and drive a positive allosteric modulation of endogenous BDNF. Although neurotrophins such as BDNF can bind to the p75 neurotrophin receptor (p75NTR), their precursors are the high affinity p75NTR ligands. While part of an unrelated receptor family capable of inducing completely opposite physiological changes, TrkB and p75NTR feature a cross-like conformation dimer and carry a cholesterol-recognition and alignment consensus in the transmembrane domain. Since such qualities were found crucial for antidepressants to bind to TrkB and drive behavioral and neuroplasticity effects, we hypothesized that their effects might also depend on p75NTR. METHODS: ELISA-based binding assay and NMR spectroscopy were accomplished to assess whether antidepressants would bind to p75NTR. HEK293T cells and a variety of in vitro assays were used to address whether fluoxetine (FLX) or ketamine (KET) would trigger any α- and γ-secretase-dependent p75NTR proteolysis, and lead to p75NTR nuclear localization. Ocular dominance shift was performed with male and female p75KO mice to study the effects of KET and FLX on brain plasticity, in addition to pharmacological interventions to verifying how p75NTR signaling is important for the effects of KET and FLX in enhancing extinction memory in male WT mice and rats. RESULTS: Antidepressants were found binding to p75NTR, FLX and KET triggered the p75NTR proteolytic pathway and induced p75NTR-dependent behavioral/neuroplasticity changes. CONCLUSION: We thus hypothesize that antidepressants co-opt both BDNF/TrkB and proBDNF/p75NTR systems to induce a more efficient activity-dependent synaptic competition, thereby boosting the brain ability for remodeling.

4.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474299

RESUMEN

NanoFAST is the smallest fluorogen-activating protein, consisting of only 98 amino acids, used as a genetically encoded fluorescent tag. Previously, only a single fluorogen with an orange color was revealed for this protein. In the present paper, using rational mutagenesis and in vitro screening of fluorogens libraries, we expanded the color palette of this tag. We discovered that E46Q is one of the key substitutions enabling the range of possible fluorogens to be expanded. The introduction of this and several other substitutions has made it possible to use not only orange but also red and green fluorogens with the modified protein.


Asunto(s)
Colorantes Fluorescentes , Proteínas , Colorantes Fluorescentes/química
5.
Int J Mol Sci ; 24(19)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37834312

RESUMEN

Integral membrane proteins are important components of a cell. Their structural and functional studies require production of milligram amounts of proteins, which nowadays is not a routine process. Cell-free protein synthesis is a prospective approach to resolve this task. However, there are few known membrane mimetics that can be used to synthesize active membrane proteins in high amounts. Here, we present the application of commercially available "Facade" detergents for the production of active rhodopsin. We show that the yield of active protein in lipid bicelles containing Facade-EM, Facade-TEM, and Facade-EPC is several times higher than in the case of conventional bicelles with CHAPS and DHPC and is comparable to the yield in the presence of lipid-protein nanodiscs. Moreover, the effects of the lipid-to-detergent ratio, concentration of detergent in the feeding mixture, and lipid composition of the bicelles on the total, soluble, and active protein yields are discussed. We show that Facade-based bicelles represent a prospective membrane mimetic, available for the production of membrane proteins in a cell-free system.


Asunto(s)
Membrana Dobles de Lípidos , Proteínas de la Membrana , Proteínas de la Membrana/química , Membrana Dobles de Lípidos/química , Detergentes/química , Sistema Libre de Células , Micelas
6.
Nat Neurosci ; 26(6): 1032-1041, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280397

RESUMEN

Psychedelics produce fast and persistent antidepressant effects and induce neuroplasticity resembling the effects of clinically approved antidepressants. We recently reported that pharmacologically diverse antidepressants, including fluoxetine and ketamine, act by binding to TrkB, the receptor for BDNF. Here we show that lysergic acid diethylamide (LSD) and psilocin directly bind to TrkB with affinities 1,000-fold higher than those for other antidepressants, and that psychedelics and antidepressants bind to distinct but partially overlapping sites within the transmembrane domain of TrkB dimers. The effects of psychedelics on neurotrophic signaling, plasticity and antidepressant-like behavior in mice depend on TrkB binding and promotion of endogenous BDNF signaling but are independent of serotonin 2A receptor (5-HT2A) activation, whereas LSD-induced head twitching is dependent on 5-HT2A and independent of TrkB binding. Our data confirm TrkB as a common primary target for antidepressants and suggest that high-affinity TrkB positive allosteric modulators lacking 5-HT2A activity may retain the antidepressant potential of psychedelics without hallucinogenic effects.


Asunto(s)
Antidepresivos , Alucinógenos , Dietilamida del Ácido Lisérgico , Psilocibina , Receptor trkB , Alucinógenos/metabolismo , Humanos , Células HEK293 , Sitios de Unión , Simulación de Dinámica Molecular , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Transducción de Señal , Receptor trkB/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Antidepresivos/metabolismo , Regulación Alostérica , Masculino , Femenino , Animales , Ratones , Ratones Endogámicos C57BL , Embrión de Mamíferos/citología , Neuronas/efectos de los fármacos , Dietilamida del Ácido Lisérgico/química , Dietilamida del Ácido Lisérgico/metabolismo , Dietilamida del Ácido Lisérgico/farmacología , Psilocibina/química , Psilocibina/metabolismo , Psilocibina/farmacología
7.
Int J Mol Sci ; 24(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37175667

RESUMEN

In this work, we showed that the well-known NanoLuc luciferase can act as a fluorogen activating protein for various arylidene-imidazolones structurally similar to the Kaede protein chromophore. We showed that such compounds can be used as fluorescent sensors for this protein and can also be used in pairs with it in fluorescent microscopy as a genetically encoded tag.


Asunto(s)
Colorantes Fluorescentes , Colorantes Fluorescentes/metabolismo , Luciferasas/genética , Microscopía Fluorescente
8.
Commun Biol ; 6(1): 471, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37117801

RESUMEN

Fasciclins (FAS1) are ancient adhesion protein domains with no common small ligand binding reported. A unique microalgal FAS1-containing astaxanthin (AXT)-binding protein (AstaP) binds a broad repertoire of carotenoids by a largely unknown mechanism. Here, we explain the ligand promiscuity of AstaP-orange1 (AstaPo1) by determining its NMR structure in complex with AXT and validating this structure by SAXS, calorimetry, optical spectroscopy and mutagenesis. α1-α2 helices of the AstaPo1 FAS1 domain embrace the carotenoid polyene like a jaw, forming a hydrophobic tunnel, too short to cap the AXT ß-ionone rings and dictate specificity. AXT-contacting AstaPo1 residues exhibit different conservation in AstaPs with the tentative carotenoid-binding function and in FAS1 proteins generally, which supports the idea of AstaP neofunctionalization within green algae. Intriguingly, a cyanobacterial homolog with a similar domain structure cannot bind carotenoids under identical conditions. These structure-activity relationships provide the first step towards the sequence-based prediction of the carotenoid-binding FAS1 members.


Asunto(s)
Proteínas Portadoras , Moléculas de Adhesión Celular , Ligandos , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Moléculas de Adhesión Celular/metabolismo , Carotenoides/metabolismo
9.
J Biomol NMR ; 77(1-2): 15-24, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36451032

RESUMEN

Membrane proteins are one of the keystone objects in molecular biology, but their structural studies often require an extensive search for an appropriate membrane-like environment and an efficient refolding protocol for a recombinant protein. Isotropic bicelles are a convenient membrane mimetic used in structural studies of membrane proteins. Helical membrane domains are often transferred into bicelles from trifluoroethanol-water mixtures. However, the protocols for such a refolding are empirical and the process itself is still not understood in detail. In search of the optimal refolding approaches for helical membrane proteins, we studied here how membrane proteins, lipids, and detergents interact with each other at various trifluoroethanol-water ratios. Using high-resolution NMR spectroscopy and dynamic light scattering, we determined the key states of the listed compounds in the trifluoroethanol/water mixture, found the factors that could be critical for the efficiency of refolding, and proposed several most optimal protocols. These protocols were developed on the transmembrane domain of neurotrophin receptor TrkA and tested on two model helical membrane domains-transmembrane of Toll-like receptor TLR9 and voltage-sensing domain of a potassium channel KvAP.


Asunto(s)
Trifluoroetanol , Agua , Resonancia Magnética Nuclear Biomolecular , Proteínas de la Membrana , Lípidos/química
10.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36232662

RESUMEN

NanoFAST is a fluorogen-activating protein and can be considered one of the smallest encodable fluorescent tags. Being a shortened variant of another fluorescent tag, FAST, nanoFAST works nicely only with one out of all known FAST ligands. This substantially limits the applicability of this protein. To find the reason for such a behavior, we investigated the spatial structure and dynamics of nanoFAST, both in the apo state and in the complex with its fluorogen molecule, using the solution NMR spectroscopy. We showed that the truncation of FAST did not affect the structure of the remaining part of the protein. Our data suggest that the deleted N-terminus of FAST destabilizes the C-terminal domain in the apo state. While it does not contact the fluorogen directly, it serves as a free energy reservoir that enhances the ligand binding propensity of the protein. The structure of nanoFAST/HBR-DOM2 complex reveals the atomistic details of nanoFAST interactions with the rhodanine-based ligands and explains the ligand specificity. NanoFAST selects ligands with the lowest dissociation constants, 2,5-disubstituted 4-hydroxybenzyldienerhodainines, which allow the non-canonical intermolecular CH-N hydrogen bonding and provide the optimal packing of the ligand within the hydrophobic cavity of the protein.


Asunto(s)
Rodanina , Enlace de Hidrógeno , Ligandos , Espectroscopía de Resonancia Magnética , Proteínas
11.
Commun Biol ; 5(1): 706, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35840781

RESUMEN

"Fluorescence-Activating and absorption-Shifting Tag" (FAST) is a well-studied fluorogen-activating protein with high brightness and low size, able to activate a wide range of fluorogens. This makes FAST a promising target for both protein and fluorogen optimization. Here, we describe the structure-based rational design of the enhanced FAST mutants, optimized for the N871b fluorogen. Using the spatial structure of the FAST/N871b complex, NMR relaxation analysis, and computer simulations, we identify the mobile regions in the complex and suggest mutations that could stabilize both the protein and the ligand. Two of our mutants appear brighter than the wild-type FAST, and these mutants provide up to 35% enhancement for several other fluorogens of similar structure, both in vitro and in vivo. Analysis of the mutants by NMR reveals that brighter mutants demonstrate the highest stability and lowest length of intermolecular H-bonds. Computer simulations provide the structural basis for such stabilization.


Asunto(s)
Colorantes Fluorescentes , Proteínas , Fluorescencia , Colorantes Fluorescentes/química
12.
iScience ; 25(6): 104348, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35601915

RESUMEN

Receptor tyrosine kinases (RTKs) are key players in development and several diseases. Understanding the molecular mechanism of RTK activation by its ligand could lead to the design of new RTK inhibitors. How the extracellular domain is coupled to the intracellular kinase domain is a matter of debate. Ligand-induced dimerization and ligand-induced conformational change of pre-formed dimers are two of the most proposed models. Recently we proposed that TrkA, the RTK for nerve growth factor (NGF), is activated by rotation of the transmembrane domain (TMD) pre-formed dimers upon NGF binding. However, one of the unsolved issues is how the ligand binding is conformationally coupled to the TMD rotation if unstructured extracellular juxtamembrane (eJTM) regions separate them. Here we use nuclear magnetic resonance in bicelles and functional studies to demonstrate that eJTM regions from the Trk family are intrinsically disordered and couple the ligand-binding domains and TMDs possibly via the interaction with NGF.

13.
Commun Biol ; 4(1): 1003, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34429510

RESUMEN

Toll-like receptors (TLRs) play an important role in the innate immune response. While a lot is known about the structures of their extracellular parts, many questions are still left unanswered, when the structural basis of TLR activation is analyzed for the TLR intracellular domains. Here we report the structure and dynamics of TLR1 toll-interleukin like (TIR) cytoplasmic domain in crystal and in solution. We found that the TLR1-TIR domain is capable of specific binding of Zn with nanomolar affinity. Interactions with Zn are mediated by cysteine residues 667 and 686 and C667 is essential for the Zn binding. Potential structures of the TLR1-TIR/Zn complex were predicted in silico. Using the functional assays for the heterodimeric TLR1/2 receptor, we found that both Zn addition and Zn depletion affect the activity of TLR1, and C667A mutation disrupts the receptor activity. Analysis of C667 position in the TLR1 structure and possible effects of C667A mutation, suggests that zinc-binding ability of TLR1-TIR domain is critical for the receptor activation.


Asunto(s)
Receptor Toll-Like 1/genética , Zinc/metabolismo , Células HEK293 , Humanos , Iones/metabolismo , Dominios Proteicos , Receptor Toll-Like 1/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo
14.
J Biol Chem ; 297(2): 100926, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34216618

RESUMEN

The neurotrophin receptors p75 and tyrosine protein kinase receptor A (TrkA) play important roles in the development and survival of the nervous system. Biochemical data suggest that p75 and TrkA reciprocally regulate the activities of each other. For instance, p75 is able to regulate the response of TrkA to lower concentrations of nerve growth factor (NGF), and TrkA promotes shedding of the extracellular domain of p75 by α-secretases in a ligand-dependent manner. The current model suggests that p75 and TrkA are regulated by means of a direct physical interaction; however, the nature of such interaction has been elusive thus far. Here, using NMR in micelles, multiscale molecular dynamics, FRET, and functional studies, we identified and characterized the direct interaction between TrkA and p75 through their respective transmembrane domains (TMDs). Molecular dynamics of p75-TMD mutants suggests that although the interaction between TrkA and p75 TMDs is maintained upon mutation, a specific protein interface is required to facilitate TrkA active homodimerization in the presence of NGF. The same mutations in the TMD protein interface of p75 reduced the activation of TrkA by NGF as well as reducing cell differentiation. In summary, we provide a structural model of the p75-TrkA receptor complex necessary for neuronal development stabilized by TMD interactions.


Asunto(s)
Receptor de Factor de Crecimiento Nervioso , Receptor trkA , Animales , Diferenciación Celular , Neurogénesis , Células PC12 , Unión Proteica , Dominios Proteicos , Ratas
15.
Chem Sci ; 12(19): 6719-6725, 2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-34040747

RESUMEN

One of the essential characteristics of any tag used in bioscience and medical applications is its size. The larger the label, the more it may affect the studied object, and the more it may distort its behavior. In this paper, using NMR spectroscopy and X-ray crystallography, we have studied the structure of fluorogen-activating protein FAST both in the apo form and in complex with the fluorogen. We showed that significant change in the protein occurs upon interaction with the ligand. While the protein is completely ordered in the complex, its apo form is characterized by higher mobility and disordering of its N-terminus. We used structural information to design the shortened FAST (which we named nanoFAST) by truncating 26 N-terminal residues. Thus, we created the shortest genetically encoded tag among all known fluorescent and fluorogen-activating proteins, which is composed of only 98 amino acids.

16.
Protein Expr Purif ; 181: 105832, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33516826

RESUMEN

T7 expression system is an extremely popular approach for the recombinant protein production in Escherichia coli for structural and functional studies and therapeutic applications. There are many useful tools and successful techniques that allow expressing the desired protein in this system. However, high yield of soluble protein often requires a systematic optimization of a wide range of cell cultivation parameters. Here we analyze the effect of three key cultivation parameters - chemical inductor, temperature and time of post-induction culturing on the expression level of TLR1 intracellular TIR domain in a soluble form. In addition, the influence of Triton X-100 detergent on the protein solubility during the cell lysis was investigated. We show that a high expression level of the correctly folded soluble protein can be obtained under different combinations of cultivation parameters.


Asunto(s)
Escherichia coli , Expresión Génica , Receptor Toll-Like 1 , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Dominios Proteicos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Receptor Toll-Like 1/biosíntesis , Receptor Toll-Like 1/genética
17.
Sci Rep ; 10(1): 13686, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32792564

RESUMEN

The neurotrophin receptor p75NTR plays crucial roles in neuron development and regulates important neuronal processes like degeneration, apoptosis and cell survival. At the same time the detailed mechanism of signal transduction is unclear. One of the main hypotheses known as the snail-tong mechanism assumes that in the inactive state, the death domains interact with each other and in response to ligand binding there is a conformational change leading to their exposure. Here, we show that neither rat nor human p75NTR death domains homodimerize in solution. Moreover, there is no interaction between the death domains in a more native context: the dimerization of transmembrane domains in liposomes and the presence of activating mutation in extracellular juxtamembrane region do not lead to intracellular domain interaction. These findings suggest that the activation mechanism of p75NTR should be revised. Thus, we propose a novel model of p75NTR functioning based on interaction with "helper" protein.


Asunto(s)
Mutación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Receptores de Factores de Crecimiento/química , Receptores de Factores de Crecimiento/metabolismo , Receptores de Factor de Crecimiento Nervioso/química , Receptores de Factor de Crecimiento Nervioso/metabolismo , Animales , Humanos , Ligandos , Liposomas/metabolismo , Modelos Moleculares , Proteínas del Tejido Nervioso/genética , Unión Proteica , Conformación Proteica , Dominios Proteicos , Multimerización de Proteína , Ratas , Receptores de Factores de Crecimiento/genética , Receptores de Factor de Crecimiento Nervioso/genética
18.
Biochim Biophys Acta Biomembr ; 1862(10): 183380, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32497549

RESUMEN

Latent membrane protein 1 (LMP1) is a gene product of the Epstein-Barr virus (EBV), a widely spread virus present in 90-95% of the world's population. EBV can lead to several malignancies, in which LMP1 was shown to play a key role. LMP1 is active only in the oligomeric form and its fifth transmembrane domain (TMD-5) is critical for the oligomerization, with D150 identified as a key residue for LMP1 activation. Here we propose an NMR-based approach to treat the complex oligomerization equilibria with slow conformational exchange. Using this method we investigate the TMD-5 in DPC micelles. We show that the pKa of D150 equals 7.4. Uncharged form of TMD-5 associates into dimers and trimers, deprotonation of D150 induces the high-order oligomerization of the protein and enhances dramatically its trimerization. Pentamidine interacts mainly with the charged TMD-5, destroying the oligomers and stabilizing the monomer and trimer. Using computer simulations we investigate the structural basis of TMD-5/pentamidine interaction. Our data suggest that D150 is likely charged in the full-length LMP1 under native conditions.


Asunto(s)
Biopolímeros/química , Pentamidina/farmacología , Proteínas de la Matriz Viral/antagonistas & inhibidores , Secuencia de Aminoácidos , Antivirales/farmacología , Simulación por Computador , Soluciones
19.
J Biol Chem ; 295(1): 275-286, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31801826

RESUMEN

Tropomyosin-receptor kinases (TRKs) are essential for the development of the nervous system. The molecular mechanism of TRKA activation by its ligand nerve growth factor (NGF) is still unsolved. Recent results indicate that at endogenous levels most of TRKA is in a monomer-dimer equilibrium and that the binding of NGF induces an increase of the dimeric and oligomeric forms of this receptor. An unsolved issue is the role of the TRKA transmembrane domain (TMD) in the dimerization of TRKA and the structural details of the TMD in the active dimer receptor. Here, we found that the TRKA-TMD can form dimers, identified the structural determinants of the dimer interface in the active receptor, and validated this interface through site-directed mutagenesis together with functional and cell differentiation studies. Using in vivo cross-linking, we found that the extracellular juxtamembrane region is reordered after ligand binding. Replacement of some residues in the juxtamembrane region with cysteine resulted in ligand-independent active dimers and revealed the preferred dimer interface. Moreover, insertion of leucine residues into the TMD helix induced a ligand-independent TRKA activation, suggesting that a rotation of the TMD dimers underlies NGF-induced TRKA activation. Altogether, our findings indicate that the transmembrane and juxtamembrane regions of TRKA play key roles in its dimerization and activation by NGF.


Asunto(s)
Simulación de Dinámica Molecular , Factor de Crecimiento Nervioso/metabolismo , Multimerización de Proteína , Receptor trkA/química , Sustitución de Aminoácidos , Animales , Sitios de Unión , Diferenciación Celular , Células HeLa , Humanos , Células PC12 , Unión Proteica , Ratas , Receptor trkA/genética , Receptor trkA/metabolismo
20.
Proteins ; 87(9): 786-790, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31033000

RESUMEN

Structural study of any single-pass membrane protein is both an important and challenging task. In this report, we present the structure of a neurotrophin receptor-alike death-domain protein. The structure and dynamics of the protein was investigated by conventional nuclear magnetic resonance techniques in the solution of phospholipid bicelles. The receptor contains two folded regions-α-helical transmembrane domain and globular C-terminal death domain with more than 50% of the rest of backbone being disordered. This is the first structure of a full-length single-pass membrane receptor-alike protein solved by the single method.


Asunto(s)
Proteínas de la Membrana/química , Fosfolípidos/química , Espectroscopía de Resonancia Magnética , Proteínas de la Membrana/metabolismo , Fosfolípidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA