Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
ACS Chem Biol ; 18(5): 1158-1167, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37145869

RESUMEN

Peptides represent an increasingly important class of pharmaceutical products. During the last decade or so, acylation with fatty acids has demonstrated considerable success in prolonging the circulating half-life of therapeutic peptides by exploiting the ability of fatty acids to reversibly bind to human serum albumin (HSA), thus significantly impacting their pharmacological profiles. Employing methyl-13C-labeled oleic acid or palmitic acid as probe molecules and exploiting HSA mutants designed to probe fatty acid binding, the signals in two-dimensional (2D) nuclear magnetic resonance (NMR) spectra corresponding to high-affinity fatty acid binding sites in HSA were assigned. Subsequently, using a set of selected acylated peptides, competitive displacement experiments by 2D NMR identified a primary fatty acid binding site in HSA utilized in acylated peptide binding. These results represent an important first step toward understanding the structural basis for acylated peptides binding to HSA.


Asunto(s)
Albúmina Sérica Humana , Albúmina Sérica , Humanos , Albúmina Sérica Humana/metabolismo , Albúmina Sérica/química , Albúmina Sérica/metabolismo , Sitios de Unión , Ácidos Grasos/metabolismo , Péptidos/metabolismo , Unión Proteica
2.
Cell Metab ; 35(2): 274-286.e10, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36630958

RESUMEN

GDF15 and its receptor GFRAL/RET form a non-homeostatic system that regulates food intake and body weight in preclinical species. Here, we describe a GDF15 analog, LY3463251, a potent agonist at the GFRAL/RET receptor with prolonged pharmacokinetics. In rodents and obese non-human primates, LY3463251 decreased food intake and body weight with no signs of malaise or emesis. In a first-in-human study in healthy participants, single subcutaneous LY3463251 injections showed a safety and pharmacokinetic profile supporting further clinical development with dose-dependent nausea and emesis in a subset of individuals. A subsequent 12-week multiple ascending dose study in overweight and obese participants showed that LY3463251 induced significant decreases in food intake and appetite scores associated with modest body weight reduction independent of nausea and emesis (clinicaltrials.gov: NCT03764774). These observations demonstrate that agonism of the GFRAL/RET system can modulate energy balance in humans, though the decrease in body weight is surprisingly modest, suggesting challenges in leveraging the GDF15 system for clinical weight-loss applications.


Asunto(s)
Obesidad , Pérdida de Peso , Animales , Humanos , Peso Corporal , Obesidad/tratamiento farmacológico , Vómitos , Factor 15 de Diferenciación de Crecimiento
3.
Nat Med ; 23(10): 1215-1219, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28846098

RESUMEN

Growth/differentiation factor 15 (GDF15), also known as MIC-1, is a distant member of the transforming growth factor-ß (TGF-ß) superfamily and has been implicated in various biological functions, including cancer cachexia, renal and heart failure, atherosclerosis and metabolism. A connection between GDF15 and body-weight regulation was initially suggested on the basis of an observation that increasing GDF15 levels in serum correlated with weight loss in individuals with advanced prostate cancer. In animal models, overexpression of GDF15 leads to a lean phenotype, hypophagia and other improvements in metabolic parameters, suggesting that recombinant GDF15 protein could potentially be used in the treatment of obesity and type 2 diabetes. However, the signaling and mechanism of action of GDF15 are poorly understood owing to the absence of a clearly identified cognate receptor. Here we report that GDNF-family receptor α-like (GFRAL), an orphan member of the GFR-α family, is a high-affinity receptor for GDF15. GFRAL binds to GDF15 in vitro and is required for the metabolic actions of GDF15 with respect to body weight and food intake in vivo in mice. Gfral-/- mice were refractory to the effects of recombinant human GDF15 on body-weight, food-intake and glucose parameters. Blocking the interaction between GDF15 and GFRAL with a monoclonal antibody prevented the metabolic effects of GDF15 in rats. Gfral mRNA is highly expressed in the area postrema of mouse, rat and monkey, in accordance with previous reports implicating this region of the brain in the metabolic actions of GDF15 (refs. 4,5,6). Together, our data demonstrate that GFRAL is a receptor for GDF15 that mediates the metabolic effects of GDF15.


Asunto(s)
Área Postrema/metabolismo , Ingestión de Alimentos/efectos de los fármacos , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Factor 15 de Diferenciación de Crecimiento/farmacología , Obesidad/metabolismo , Pérdida de Peso/efectos de los fármacos , Animales , Encéfalo/metabolismo , Ingestión de Alimentos/genética , Citometría de Flujo , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Células HEK293 , Humanos , Immunoblotting , Macaca fascicularis , Masculino , Ratones , Ratones Noqueados , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Resonancia por Plasmón de Superficie , Pérdida de Peso/genética
4.
J Mol Biol ; 426(3): 510-25, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24161953

RESUMEN

The cellular ESCRT (endosomal sorting complexes required for transport) pathway drives membrane constriction toward the cytosol and effects membrane fission during cytokinesis, endosomal sorting, and the release of many enveloped viruses, including the human immunodeficiency virus. A component of this pathway, the AAA ATPase Vps4, provides energy for pathway progression. Although it is established that Vps4 functions as an oligomer, subunit stoichiometry and other fundamental features of the functional enzyme are unclear. Here, we report that although some mutant Vps4 proteins form dodecameric assemblies, active wild-type Saccharomyces cerevisiae and Sulfolobus solfataricus Vps4 enzymes can form hexamers in the presence of ATP and ADP, as assayed by size-exclusion chromatography and equilibrium analytical ultracentrifugation. The Vta1p activator binds hexameric yeast Vps4p without changing the oligomeric state of Vps4p, implying that the active Vta1p-Vps4p complex also contains a single hexameric ring. Additionally, we report crystal structures of two different archaeal Vps4 homologs, whose structures and lattice interactions suggest a conserved mode of oligomerization. Disruption of the proposed hexamerization interface by mutagenesis abolished the ATPase activity of archaeal Vps4 proteins and blocked Vps4p function in S. cerevisiae. These data challenge the prevailing model that active Vps4 is a double-ring dodecamer, and argue that, like other type I AAA ATPases, Vps4 functions as a single ring with six subunits.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Adenosina Trifosfatasas/química , Cristalografía por Rayos X , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Humanos , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
J Mol Biol ; 384(4): 878-95, 2008 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-18929572

RESUMEN

The ESCRT (endosomal sorting complexes required for transport) pathway functions in vesicle formation at the multivesicular body, the budding of enveloped RNA viruses such as HIV-1, and the final abscission stage of cytokinesis. As the only known enzyme in the ESCRT pathway, the AAA ATPase (ATPase associated with diverse cellular activities) Vps4 provides the energy required for multiple rounds of vesicle formation. Like other Vps4 proteins, yeast Vps4 cycles through two states: a catalytically inactive disassembled state that we show here is a dimer and a catalytically active higher-order assembly that we have modeled as a dodecamer composed of two stacked hexameric rings. We also report crystal structures of yeast Vps4 proteins in the apo- and ATPgammaS [adenosine 5'-O-(3-thiotriphosphate)]-bound states. In both cases, Vps4 subunits assembled into continuous helices with 6-fold screw axes that are analogous to helices seen previously in other Vps4 crystal forms. The helices are stabilized by extensive interactions between the large and small AAA ATPase domains of adjacent Vps4 subunits, suggesting that these contact surfaces may be used to build both the catalytically active dodecamer and catalytically inactive dimer. Consistent with this model, we have identified interface mutants that specifically inhibit Vps4 dimerization, dodecamerization, or both. Thus, the Vps4 dimer and dodecamer likely form distinct but overlapping interfaces. Finally, our structural studies have allowed us to model the conformation of a conserved loop (pore loop 2) that is predicted to form an arginine-rich pore at the center of one of the Vps4 hexameric rings. Our mutational analyses demonstrate that pore loop 2 residues Arg241 and Arg251 are required for efficient HIV-1 budding, thereby supporting a role for this "arginine collar" in Vps4 function.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Cristalografía por Rayos X , Dimerización , Complejos de Clasificación Endosomal Requeridos para el Transporte , Sustancias Macromoleculares/química , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación Missense , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína , Alineación de Secuencia
6.
J Mol Biol ; 377(2): 364-77, 2008 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-18280501

RESUMEN

The type I AAA (ATPase associated with a variety of cellular activities) ATPase Vps4 and its co-factor Vta1p/LIP5 function in membrane remodeling events that accompany cytokinesis, multivesicular body biogenesis, and retrovirus budding, apparently by driving disassembly and recycling of membrane-associated ESCRT (endosomal sorting complex required for transport)-III complexes. Here, we present electron cryomicroscopy reconstructions of dodecameric yeast Vps4p complexes with and without their microtubule interacting and transport (MIT) N-terminal domains and Vta1p co-factors. The ATPase domains of Vps4p form a bowl-like structure composed of stacked hexameric rings. The two rings adopt dramatically different conformations, with the "upper" ring forming an open assembly that defines the sides of the bowl and the lower ring forming a closed assembly that forms the bottom of the bowl. The N-terminal MIT domains of the upper ring localize on the symmetry axis above the cavity of the bowl, and the binding of six extended Vta1p monomers causes additional density to appear both above and below the bowl. The structures suggest models in which Vps4p MIT and Vta1p domains engage ESCRT-III substrates above the bowl and help transfer them into the bowl to be pumped through the center of the dodecameric assembly.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/ultraestructura , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Cromatografía en Gel , Microscopía por Crioelectrón , Complejos de Clasificación Endosomal Requeridos para el Transporte , Modelos Moleculares , Unión Proteica , Estructura Cuaternaria de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA