Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Plants (Basel) ; 13(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39124253

RESUMEN

Since 2012, growers of coriander, Coriandrum sativum L., in Israel have been suffering from summer wilting that can result in entire fields collapsing. The current study aimed to determine the cause of the phenomenon and find a genetic solution to the problem. The disease was reproduced in a growth chamber using naturally-infested soil from a commercial field. Wilt became apparent within two weeks, and after ten weeks, all plants died compared to plants in sterilized soil from the same source. Fusarium oxysporum was isolated from infected plants, and Koch's postulates were completed. Sequence analysis of the Elongation Factor (EF1α) encoding gene of the pathogen had a 99.54% match to F. oxysporum f. sp. coriandrii. Several coriander varieties were screened for resistance or tolerance to the disease. In four independent experiments, only the cultivar 'Smadi' showed high tolerance, while other genotypes were susceptible. In a trial in a naturally infested field, the cultivar 'Smadi' outperformed the commercial cultivar 'Blair'. 'Smadi' provides a cropping solution to many Israeli farmers, yet this winter cultivar bolts early in the summer. There is a further need to characterize the tolerance mechanism and inheritance for informed breeding of late-bolting Fusarium-resistant coriander.

2.
Physiol Plant ; 175(1): e13870, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36724166

RESUMEN

Sweet basil, Ocimum basilicum L., is an important culinary herb grown worldwide. Although basil is green, many landraces, breeding lines, and exotic cultivars have purple stems and flowers. This anthocyanin pigmentation is unacceptable in traditional Italian basil used for Pesto sauce production. In the current study, we aimed to resolve the genetics that underlines the different colors. We used the recently published sweet basil genome to map quantitative trait loci (QTL) for flower and stem color in a bi-parental F2 population. It was found that the pigmentation is governed by a single QTL, harboring an anthocyanidin synthase (ANS) gene (EC 1.14.20.4). Further analysis revealed that the basil genome harbors two homeologous ANS genes, each carrying a loss-of-function mutation. ObANS1 carries a single base pair insertion resulting in a frameshift, and ObANS2 carries a missense mutation within the active site. In the purple-flower parent, ANS1 is functional, and ANS2 carries a nonsense mutation. The functionality of the ObANS1 active allele was validated by complementation assay in an Arabidopsis ANS mutant. Moreover, we have restored the functionality of the missense-mutated ObANS2 using site-directed activation. We found that the non-functional alleles were expressed to similar levels as the functional allele, suggesting polyploids invest futile effort in expressing non-functional genes, offsetting their advantageous redundancy. This work demonstrated the usefulness of the genomics and genetics of basil to understand the basic mechanism of metabolic traits and raise fundamental questions in polyploid plant biology.


Asunto(s)
Ocimum basilicum , Oxigenasas/genética , Fenotipo , Mutación
3.
Plant Sci ; 321: 111316, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35696916

RESUMEN

Fusarium wilt of basil is a disease of sweet basil (Ocimum basilicum L.) plants caused by the fungus Fusarium oxysporum f. sp. basilici (FOB). Although resistant cultivars were released > 20 years ago, the underlying mechanism and the genes controlling the resistance remain unknown. We used genetic mapping to elucidate FOB resistance in an F2 population derived from a cross between resistant and susceptible cultivars. We performed genotyping by sequencing of 173 offspring and aligning the data to the sweet basil reference genome. In total, 23,411 polymorphic sites were detected, and a single quantitative trait locus (QTL) for FOB resistance was found. The confidence interval was < 600 kbp, harboring only 60 genes, including a cluster of putative disease-resistance genes. Based on homology to a fusarium resistance protein from wild tomato, we also investigated a candidate resistance gene that encodes a transmembrane leucine-rich repeat - receptor-like kinase - ubiquitin-like protease (LRR-RLK-ULP). Sequence analysis of that gene in the susceptible parent vs. the resistant parent revealed multiple indels, including an insertion of 20 amino acids next to the transmembrane domain, which might alter its functionality. Our findings suggest that this LRR-RLK-ULP might be responsible for FOB resistance in sweet basil and demonstrate the usefulness of the recently sequenced basil genome for QTL mapping and gene mining.


Asunto(s)
Fusarium , Ocimum basilicum , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Fusarium/genética , Ocimum basilicum/genética , Ocimum basilicum/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
4.
Curr Opin Plant Biol ; 67: 102221, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35533493

RESUMEN

Aroma volatiles are essential for plant ecological fitness and reproduction. Plants produce and use volatiles to attract pollinators and seed dispersers, repel herbivores and recruit their natural enemies, and communicate with other plants. Amino acids and their biosynthetic intermediates play key roles as precursors for the biosynthesis of plant volatiles. Different plants utilize different strategies and biosynthetic pathways to meet their specific biological needs. This review focuses on the different biosynthetic pathways that plants utilize to form amino acid-derived aroma volatiles, emphasizing their common and unique aspects and stressing the importance of the limiting enzymes residing in the primary-specialized metabolism interface. We also briefly review how biotechnology has used this interface and point to promising future directions for improving the quality of agricultural produce and the production of key volatiles.


Asunto(s)
Odorantes , Compuestos Orgánicos Volátiles , Aminoácidos/metabolismo , Plantas/metabolismo , Compuestos Orgánicos Volátiles/metabolismo
5.
DNA Res ; 27(5)2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33340318

RESUMEN

Sweet basil, Ocimum basilicum L., is a well-known culinary herb grown worldwide, but its uses go beyond the kitchen to traditional medicine, cosmetics and gardening. To date, the lack of an available reference genome has limited the utilization of advanced molecular breeding methods. We present a draft version of the sweet basil genome of the cultivar 'Perrie', a fresh-cut Genovese-type basil. Genome sequencing showed basil to be a tetraploid organism with a genome size of 2.13 Gbp, assembled in 12,212 scaffolds, with > 90% of the assembly being composed of 107 scaffolds. About 76% of the genome is composed of repetitive elements, with the majority being long-terminal repeats. We constructed and annotated 62,067 protein-coding genes and determined their expression in different plant tissues. We analysed the currently known phenylpropanoid volatiles biosynthesis genes. We demonstrated the necessity of the reference genome for a comprehensive understanding of this important pathway in the context of tetraploidy and gene redundancy. A complete reference genome is essential to overcome this redundancy and to avoid off-targeting when designing a CRISPR: Cas9-based genome editing research. This work bears promise for developing fast and accurate breeding tools to provide better cultivars for farmers and improved products for consumers.


Asunto(s)
Vías Biosintéticas , Genoma de Planta , Ocimum basilicum/genética , Análisis de Secuencia de ADN , Compuestos Alílicos/metabolismo , Mapeo Cromosómico , Barajamiento de ADN , Eugenol/metabolismo , Edición Génica , Ocimum basilicum/enzimología , Ocimum basilicum/metabolismo , Fenoles/metabolismo , Filogenia , Tetraploidía
6.
Chem Biodivers ; 17(11): e2000311, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33094554

RESUMEN

Asteriscus graveolens is an aromatic desert shrub which holds medicinal potential. This species belongs to the Asteraceae family and is endemic to the Mediterranean region. In the present study, wild plants were sampled from eleven locations throughout southern Israel and the volatile profiles from leaves and flowers were analyzed using GC/MS. Three methods for volatile sampling were tested for a representative population: solvent extraction (methyl tert-butyl ether), hydrodistillation of the essential oil and headspace solid-phase microextraction. In all methods, the majority of volatiles were characterized as oxygenated mono- and sesquiterpenes. Only solvent extraction was able to detect asteriscunolides that were previously reported as anticancer molecules. Hence, that method was chosen for further analyses. The leaves were dominated by three asteriscunolide isomers, cis-chrysanthenyl acetate and intermedeol. The flowers were dominated by bisabolone, 6-hydroxybisabol-2-en-1-one, cis-chrysanthenyl acetate, epi-α-cadinol, and germacrene-D. k-Means clustering analysis of these data divided the population into four clusters that significantly differ in their volatile composition as was further demonstrated by MANOVA analysis. Geographically, A. graveolens populations growing in Israel were found to be chemically diverse with unique varieties in the Dead Sea basin and the Arava region. This work demonstrates that chemo-geographic variation of volatile composition exists within A. graveolens population growing in Israel, so future research evaluating the medicinal potential of that plant should take this into consideration.


Asunto(s)
Asteraceae/química , Cromatografía de Gases y Espectrometría de Masas , Compuestos Orgánicos Volátiles/análisis , Asteraceae/metabolismo , Análisis por Conglomerados , Flores/química , Flores/metabolismo , Israel , Aceites Volátiles/química , Extractos Vegetales/química , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Sesquiterpenos/análisis , Sesquiterpenos/química , Sesquiterpenos/aislamiento & purificación , Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/aislamiento & purificación
7.
Nat Genet ; 51(6): 1044-1051, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31086351

RESUMEN

Modern tomatoes have narrow genetic diversity limiting their improvement potential. We present a tomato pan-genome constructed using genome sequences of 725 phylogenetically and geographically representative accessions, revealing 4,873 genes absent from the reference genome. Presence/absence variation analyses reveal substantial gene loss and intense negative selection of genes and promoters during tomato domestication and improvement. Lost or negatively selected genes are enriched for important traits, especially disease resistance. We identify a rare allele in the TomLoxC promoter selected against during domestication. Quantitative trait locus mapping and analysis of transgenic plants reveal a role for TomLoxC in apocarotenoid production, which contributes to desirable tomato flavor. In orange-stage fruit, accessions harboring both the rare and common TomLoxC alleles (heterozygotes) have higher TomLoxC expression than those homozygous for either and are resurgent in modern tomatoes. The tomato pan-genome adds depth and completeness to the reference genome, and is useful for future biological discovery and breeding.


Asunto(s)
Alelos , Frutas/genética , Estudios de Asociación Genética , Genoma de Planta , Genómica , Carácter Cuantitativo Heredable , Solanum lycopersicum/genética , Biología Computacional/métodos , Domesticación , Genómica/métodos , Humanos , Sistemas de Lectura Abierta , Fitomejoramiento , Regiones Promotoras Genéticas , Selección Genética
8.
Plant Genome ; 12(1)2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30951101

RESUMEN

Genotyping-by-sequencing (GBS) was employed to construct a highly saturated genetic linkage map of a tomato ( L.) recombinant inbred line (RIL) population, derived from a cross between cultivar NC EBR-1 and the wild tomato L. accession LA2093. A pipeline was developed to convert single nucleotide polymorphism (SNP) data into genomic bins, which could be used for fine mapping of quantitative trait loci (QTL) and identification of candidate genes. The pipeline, implemented in a python script named SNPbinner, adopts a hidden Markov model approach for calculation of recombination breakpoints followed by genomic bins construction. The total length of the newly developed high-resolution genetic map was 1.2-fold larger than previously estimated based on restriction fragment length polymorphism (RFLP) and polymerase chain reaction (PCR)-based markers. The map was used to verify and refine QTL previously identified for two fruit quality traits in the RIL population, fruit weight (FW) and fruit lycopene content (LYC). Two well-described FW QTL ( and ) were localized precisely at their known underlying causative genes, and the QTL intervals were decreased by two- to tenfold. A major QTL for LYC content () was verified at high resolution and its underlying causative gene was determined to be ζ (). The RIL population, the high resolution genetic map, and the easy-to-use genotyping pipeline, SNPbinner, are made publicly available.


Asunto(s)
Cromosomas de las Plantas , Sitios de Carácter Cuantitativo , Solanum lycopersicum/genética , Mapeo Cromosómico , Genes de Plantas , Técnicas de Genotipaje , Licopeno/metabolismo , Polimorfismo de Nucleótido Simple/genética , ARN de Planta , Recombinación Genética , Análisis de Secuencia de ARN , cis-trans-Isomerasas/metabolismo
9.
Molecules ; 23(10)2018 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-30249067

RESUMEN

Headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography⁻mass spectrometry (GC-MS) is widely employed for volatile analyses of plants, including mapping populations used in plant breeding research. Studies often employ a single internal surrogate standard, even when multiple analytes are measured, with the assumption that any relative changes in matrix effects among individuals would be similar for all compounds, i.e., matrix effects do not show Compound × Individual interactions. We tested this assumption using individuals from two plant populations: an interspecific grape (Vitis spp.) mapping population (n = 140) and a tomato (Solanum spp.) recombinant inbred line (RIL) population (n = 148). Individual plants from the two populations were spiked with a cocktail of internal standards (n = 6, 9, respectively) prior to HS-SPME-GC-MS. Variation in the relative responses of internal standards indicated that Compound × Individual interactions exist but were different between the two populations. For the grape population, relative responses among pairs of internal standards varied considerably among individuals, with a maximum of 249% relative standard deviation (RSD) for the pair of [U13C]hexanal and [U13C]hexanol. However, in the tomato population, relative responses of internal standard pairs varied much less, with pairwise RSDs ranging from 8% to 56%. The approach described in this paper could be used to evaluate the suitability of using surrogate standards for HS-SPME-GC-MS studies in other plant populations.


Asunto(s)
Solanum lycopersicum/química , Vitis/química , Compuestos Orgánicos Volátiles/aislamiento & purificación , Cromatografía de Gases y Espectrometría de Masas , Fitomejoramiento , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles/química
10.
Plant Sci ; 274: 223-230, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30080607

RESUMEN

Volatile esters contribute to the aroma and flavor of many fruits but are normally absent in grape berries (Vitis vinifera L.). To examine the biosynthetic potential of grape berries to form volatile esters, berry sections were incubated with exogenous L-Phe, L-Leu or L-Met. In general, amino-acid incubation caused the accumulation of the respective aldehydes and alcohols. Moreover, L-Leu incubation resulted in the accumulation of 3-methylbutyl acetate and L-Phe incubation resulted in the accumulation 2-phenylethyl acetate in 'Muscat Hamburg' but not in the other grape accessions. Exogenous L-Met administration did not result in volatile esters accumulation but the accumulation of sulfur volatile compounds such as methional and dimethyl disulfide was prominent. Berry-derived cell-free extracts displayed differential alcohol acetyltransferase activities and supported the formation of 3-methylbutyl acetate and benzyl acetate. 2-Phenylethyl acetate was produced only in 'Muscat Hamburg' cell-free extracts. VvAAT2, a newly characterized gene, was preferentially expressed in 'Muscat Hamburg' berries and functionally expressed in E. coli. VvAAT2 possesses alcohol acetyltransferase activity utilizing benzyl alcohol, 2-phenylethanol, hexanol or 3-methylbutanol as substrates. Our study demonstrates that grape berries have a concealed potential to accumulate volatile esters and this process is limited by substrate availability.


Asunto(s)
Acetiltransferasas/metabolismo , Aminoácidos/metabolismo , Ésteres/metabolismo , Frutas/metabolismo , Vitis/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Acetiltransferasas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Frutas/genética , Alcohol Feniletílico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especificidad por Sustrato , Vitis/genética
11.
Sci Rep ; 8(1): 7429, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29743622

RESUMEN

The Colorado potato beetle (CPB; Leptinotarsa decemlineata Say), the most economically important insect pest on potato (Solanum tuberosum L.), also feeds on other Solanaceae, including cultivated tomato (Solanum lycopersicum L.). We used tomato genetic mapping populations to investigate natural variation in CPB resistance. CPB bioassays with 74 tomato lines carrying introgressions of Solanum pennellii in S. lycopersicum cv. M82 identified introgressions from S. pennellii on chromosomes 1 and 6 conferring CPB susceptibility, whereas introgressions on chromosomes 1, 8 and 10 conferred higher resistance. Mapping of CPB resistance using 113 recombinant inbred lines derived from a cross between S. lycopersicum cv UC-204B and Solanum galapagense identified significant quantitative trait loci on chromosomes 6 and 8. In each case, the S. galapagense alleles were associated with lower leaf damage and reduced larval growth. Results of both genetic mapping approaches converged on the same region of chromosome 6, which may have important functions in tomato defense against CPB herbivory. Although genetic mapping identified quantitative trait loci encompassing known genes for tomato acyl sugar and glycoalkaloid biosynthesis, experiments with acyl sugar near-isogenic lines and transgenic GAME9 glycoalkaloid-deficient and overproducing lines showed no significant effect of these otherwise insect-defensive metabolites on CPB performance.


Asunto(s)
Mapeo Cromosómico , Escarabajos/fisiología , Sitios Genéticos/genética , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Animales , Endogamia , Sitios de Carácter Cuantitativo/genética
12.
Phytochemistry ; 148: 122-131, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29448137

RESUMEN

Studies on the active pathways and the genes involved in the biosynthesis of L-phenylalanine-derived volatiles in fleshy fruits are sparse. Melon fruit rinds converted stable-isotope labeled L-phe into more than 20 volatiles. Phenylpropanes, phenylpropenes and benzenoids are apparently produced via the well-known phenylpropanoid pathway involving phenylalanine ammonia lyase (PAL) and being (E)-cinnamic acid a key intermediate. Phenethyl derivatives seemed to be derived from L-phe via a separate biosynthetic route not involving (E)-cinnamic acid and PAL. To explore for a biosynthetic route to (E)-cinnamaldehyde in melon rinds, soluble protein cell-free extracts were assayed with (E)-cinnamic acid, CoA, ATP, NADPH and MgSO4, producing (E)-cinnamaldehyde in vitro. In this context, we characterized CmCNL, a gene encoding for (E)-cinnamic acid:coenzyme A ligase, inferred to be involved in the biosynthesis of (E)-cinnamaldehyde. Additionally we describe CmBAMT, a SABATH gene family member encoding a benzoic acid:S-adenosyl-L-methionine carboxyl methyltransferase having a role in the accumulation of methyl benzoate. Our approach leads to a more comprehensive understanding of L-phe metabolism into aromatic volatiles in melon fruit.


Asunto(s)
Cucumis melo/química , Frutas/química , Fenilalanina/metabolismo , Glucósidos/química , Glucósidos/aislamiento & purificación , Glicosilación , Metionina/metabolismo , Resonancia Magnética Nuclear Biomolecular , Fenilanina Amoníaco-Liasa/genética , Proteínas de Plantas/metabolismo , S-Adenosilmetionina/metabolismo , Semillas/química , Compuestos Orgánicos Volátiles/análisis
13.
Plant J ; 94(1): 169-191, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29385635

RESUMEN

Combined quantitative trait loci (QTL) and expression-QTL (eQTL) mapping analysis was performed to identify genetic factors affecting melon (Cucumis melo) fruit quality, by linking genotypic, metabolic and transcriptomic data from a melon recombinant inbred line (RIL) population. RNA sequencing (RNA-Seq) of fruit from 96 RILs yielded a highly saturated collection of > 58 000 single-nucleotide polymorphisms, identifying 6636 recombination events that separated the genome into 3663 genomic bins. Bin-based QTL analysis of 79 RILs and 129 fruit-quality traits affecting taste, aroma and color resulted in the mapping of 241 QTL. Thiol acyltransferase (CmThAT1) gene was identified within the QTL interval of its product, S-methyl-thioacetate, a key component of melon fruit aroma. Metabolic activity of CmThAT1-encoded protein was validated in bacteria and in vitro. QTL analysis of flesh color intensity identified a candidate white-flesh gene (CmPPR1), one of two major loci determining fruit flesh color in melon. CmPPR1 encodes a member of the pentatricopeptide protein family, involved in processing of RNA in plastids, where carotenoid and chlorophyll pigments accumulate. Network analysis of > 12 000 eQTL mapped for > 8000 differentially expressed fruit genes supported the role of CmPPR1 in determining the expression level of plastid targeted genes. We highlight the potential of RNA-Seq-based QTL analysis of small to moderate size, advanced RIL populations for precise marker-assisted breeding and gene discovery. We provide the following resources: a RIL population genotyped with a unique set of SNP markers, confined genomic segments that harbor QTL governing 129 traits and a saturated set of melon eQTLs.


Asunto(s)
Mapeo Cromosómico , Cucurbitaceae/genética , Frutas/genética , Sitios de Carácter Cuantitativo/genética , Cucurbitaceae/metabolismo , Calidad de los Alimentos , Frutas/metabolismo , Genes de Plantas/genética , Genes de Plantas/fisiología , Ligamiento Genético , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ARN
14.
BMC Plant Biol ; 15: 71, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25887588

RESUMEN

BACKGROUND: Melon (Cucumis melo) fruits exhibit phenotypic diversity in several key quality determinants such as taste, color and aroma. Sucrose, carotenoids and volatiles are recognized as the key compounds shaping the above corresponding traits yet the full network of biochemical events underlying their synthesis have not been comprehensively described. To delineate the cellular processes shaping fruit quality phenotypes, a population of recombinant inbred lines (RIL) was used as a source of phenotypic and genotypic variations. In parallel, ripe fruits were analyzed for both the quantified level of 77 metabolic traits directly associated with fruit quality and for RNA-seq based expression profiles generated for 27,000 unigenes. First, we explored inter-metabolite association patterns; then, we described metabolites versus gene association patterns; finally, we used the correlation-based associations for predicting uncharacterized synthesis pathways. RESULTS: Based on metabolite versus metabolite and metabolite versus gene association patterns, we divided metabolites into two key groups: a group including ethylene and aroma determining volatiles whose accumulation patterns are correlated with the expression of genes involved in the glycolysis and TCA cycle pathways; and a group including sucrose and color determining carotenoids whose accumulation levels are correlated with the expression of genes associated with plastid formation. CONCLUSIONS: The study integrates multiple processes into a genome scale perspective of cellular activity. This lays a foundation for deciphering the role of gene markers associated with the determination of fruit quality traits.


Asunto(s)
Color , Cucurbitaceae/metabolismo , Odorantes , Gusto , Cucurbitaceae/genética , Expresión Génica , Genes de Plantas
15.
Nat Commun ; 4: 2833, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24270997

RESUMEN

Phenylalanine is a vital component of proteins in all living organisms, and in plants is a precursor for thousands of additional metabolites. Animals are incapable of synthesizing phenylalanine and must primarily obtain it directly or indirectly from plants. Although plants can synthesize phenylalanine in plastids through arogenate, the contribution of an alternative pathway via phenylpyruvate, as occurs in most microbes, has not been demonstrated. Here we show that plants also utilize a microbial-like phenylpyruvate pathway to produce phenylalanine, and flux through this route is increased when the entry point to the arogenate pathway is limiting. Unexpectedly, we find the plant phenylpyruvate pathway utilizes a cytosolic aminotransferase that links the coordinated catabolism of tyrosine to serve as the amino donor, thus interconnecting the extra-plastidial metabolism of these amino acids. This discovery uncovers another level of complexity in the plant aromatic amino acid regulatory network, unveiling new targets for metabolic engineering.


Asunto(s)
Empalme Alternativo/genética , Citosol/enzimología , Fenilalanina/biosíntesis , Ácidos Fenilpirúvicos/metabolismo , Proteínas de Plantas/metabolismo , Transaminasas/metabolismo , Petunia , Fenilalanina/genética , Proteínas de Plantas/genética , Interferencia de ARN , Transaminasas/genética , Tirosina/metabolismo
16.
Plant J ; 74(3): 458-72, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23402686

RESUMEN

Sulfur-containing aroma volatiles are important contributors to the distinctive aroma of melon and other fruits. Melon cultivars and accessions differ in the content of sulfur-containing and other volatiles. L-methionine has been postulated to serve as a precursor of these volatiles. Incubation of melon fruit cubes with ¹³C- and ²H-labeled L-methionine revealed two distinct catabolic routes into volatiles. One route apparently involves the action of an L-methionine aminotransferase and preserves the main carbon skeleton of L-methionine. The second route apparently involves the action of an L-methionine-γ-lyase activity, releasing methanethiol, a backbone for formation of thiol-derived aroma volatiles. Exogenous L-methionine also generated non-sulfur volatiles by further metabolism of α-ketobutyrate, a product of L-methionine-γ-lyase activity. α-Ketobutyrate was further metabolized into L-isoleucine and other important melon volatiles, including non-sulfur branched and straight-chain esters. Cell-free extracts derived from ripe melon fruit exhibited L-methionine-γ-lyase enzymatic activity. A melon gene (CmMGL) ectopically expressed in Escherichia coli, was shown to encode a protein possessing L-methionine-γ-lyase enzymatic activity. Expression of CmMGL was relatively low in early stages of melon fruit development, but increased in the flesh of ripe fruits, depending on the cultivar tested. Moreover, the levels of expression of CmMGL in recombinant inbred lines co-segregated with the levels of sulfur-containing aroma volatiles enriched with +1 m/z unit and postulated to be produced via this route. Our results indicate that L-methionine is a precursor of both sulfur and non-sulfur aroma volatiles in melon fruit.


Asunto(s)
Cucumis melo/enzimología , Frutas/metabolismo , Metionina/metabolismo , Azufre/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Liasas de Carbono-Azufre/metabolismo , Cucumis melo/genética , Cucumis melo/crecimiento & desarrollo , Activación Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Genes de Plantas , Isoleucina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solubilidad , Especificidad de la Especie , Transaminasas/metabolismo
17.
J Exp Bot ; 61(4): 1111-23, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20065117

RESUMEN

The unique aroma of melons (Cucumis melo L., Cucurbitaceae) is composed of many volatile compounds biosynthetically derived from fatty acids, carotenoids, amino acids, and terpenes. Although amino acids are known precursors of aroma compounds in the plant kingdom, the initial steps in the catabolism of amino acids into aroma volatiles have received little attention. Incubation of melon fruit cubes with amino acids and alpha-keto acids led to the enhanced formation of aroma compounds bearing the side chain of the exogenous amino or keto acid supplied. Moreover, L-[(13)C(6)]phenylalanine was also incorporated into aromatic volatile compounds. Amino acid transaminase activities extracted from the flesh of mature melon fruits converted L-isoleucine, L-leucine, L-valine, L-methionine, or L-phenylalanine into their respective alpha-keto acids, utilizing alpha-ketoglutarate as the amine acceptor. Two novel genes were isolated and characterized (CmArAT1 and CmBCAT1) encoding 45.6 kDa and 42.7 kDa proteins, respectively, that displayed aromatic and branched-chain amino acid transaminase activities, respectively, when expressed in Escherichia coli. The expression of CmBCAT1 and CmArAT1 was low in vegetative tissues, but increased in flesh and rind tissues during fruit ripening. In addition, ripe fruits of climacteric aromatic cultivars generally showed high expression of CmBCAT1 and CmArAT1 in contrast to non-climacteric non-aromatic fruits. The results presented here indicate that in melon fruit tissues, the catabolism of amino acids into aroma volatiles can initiate through a transamination mechanism, rather than decarboxylation or direct aldehyde synthesis, as has been demonstrated in other plants.


Asunto(s)
Aminoácidos Aromáticos/biosíntesis , Aminoácidos de Cadena Ramificada/biosíntesis , Cucumis melo/metabolismo , Aminoácidos Aromáticos/química , Aminoácidos de Cadena Ramificada/química , Cucumis melo/química , Cucumis melo/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Volatilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA