Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
1.
Heliyon ; 10(17): e36565, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39263085

RESUMEN

Breast cancer is a malignant tumor that poses a serious threat to women's health, and vasculogenic mimicry (VM) is strongly associated with bad prognosis in breast cancer. However, the relationship between VM and immune infiltration in breast cancer and the underlying mechanisms have not been fully studied. On the basis of the Cancer Genome Atlas (TCGA), Fudan University Shanghai Cancer Center (FUSCC) database, GSCALite database, and gene set enrichment analysis (GSEA) datasets, we investigated the potential involvement of VM-related genes in the development and progression of breast cancer. We analyzed the differential expression, mutation status, methylation status, drug sensitivity, tumor mutation burden (TMB), microsatellite instability (MSI), immune checkpoints, tumor microenvironment (TME), and immune cell infiltration levels associated with VM-related genes in breast cancer. We created two VM subclusters out of breast cancer patients using consensus clustering, and discovered that patients in Cluster 1 had better survival outcomes compared to those in Cluster 2. The infiltration levels of T cells CD4 memory resting and T cells CD8 were higher in Cluster 1, indicating an immune-active state in this cluster. Additionally, we selected three prognostic genes (LAMC2, PIK3CA, and TFPI2) using Lasso, univariate, and multivariate Cox regression and constructed a risk model, which was validated in an external dataset. The prognosis of patients is strongly correlated with aberrant expression of VM-related genes, which advances our knowledge of the tumor immune milieu and enables us to identify previously unidentified breast cancer subtypes. This could direct more potent immunotherapy approaches.

2.
ACS Synth Biol ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39262282

RESUMEN

Genomic integration of heterologous genes is the preferred approach in industrial fermentation-related strains due to the drawbacks associated with plasmid-mediated microbial fermentation, including additional growth burden, genetic instability, and antibiotic contamination. Synthetic biology and genome editing advancements have made gene integration convenient. Integrated expression is extensively used in the field of biomanufacturing and is anticipated to become the prevailing method for expressing recombinant proteins. Therefore, it is pivotal to strengthen the expression of exogenous genes at the genome level. Here, we systematically optimized the integrated expression system of Escherichia coli from 3 aspects. First, the integration site slmA with the highest expression activity was screened out of 18 sites in the ORI region of the E. coli BL21 (DE3) genome. Second, we characterized 16 endogenous promoters in E. coli and combined them with the T7 promoter. A constitutive promoter, Plpp-T7, exhibited significantly higher expression strength than the T7 promoter, achieving a 3.3-fold increase in expression levels. Finally, to further enhance the T7 expression system, we proceeded with overexpression of T7 RNA polymerase at the chassis cell level. The resulting constitutive efficient integrated expression system (CEIES_Ecoli) showed a 2-fold increase in GFP expression compared to the pET3b recombinant plasmid. Therefore, CEIES_Ecoli was applied to the integrated expression of nitrilase and hyaluronidase, achieving stable and efficient enzyme expression, with enzyme activities of 22.87 and 12,195 U·mL-1, respectively, comparable to plasmid levels. Overall, CEIES_Ecoli provides a stable and efficient method of gene expression without the need for antibiotics or inducers, making it a robust tool for synthetic biology, enzyme engineering, and related applications.

3.
Pediatr Res ; 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39179877

RESUMEN

BACKGROUND: We aimed to explore the differences and relationships in body composition, social function, and comorbidities between children with attention-deficit/hyperactivity disorder (ADHD) and subthreshold ADHD. METHODS: A case-control study was conducted to analyze the differences between children with ADHD and subthreshold ADHD. Logistic regression models were used to analyze the factors influencing social functional impairments and comorbidities. RESULTS: Children with ADHD and subthreshold ADHD had a higher fat mass index than healthy children (p < 0.05). The scores of all six social functional domains were higher in the subthreshold ADHD and ADHD groups than in the control group (p < 0.05). The prevalence of comorbidity was higher in children with subthreshold ADHD and ADHD compared to the control group (p < 0.05). Inattention and comorbid anxiety/depression increased the risk of functional impairments in children with ADHD (full syndrome/subthreshold), whereas a higher fat-free mass index reduced the risk. The severity of hyperactivity was associated with a higher risk of comorbidity in children with ADHD (full syndrome/subthreshold). CONCLUSION: Children with subthreshold ADHD and ADHD had more fat mass and higher rates of social functional impairments and comorbidities than healthy children. There were clinical correlations between body composition, social functional impairments, and comorbidities in ADHD. IMPACT: 1. Children with subthreshold ADHD and ADHD had higher fat mass levels than normal children. 2. The social function impairments and comorbidities of children with subthreshold ADHD were similar to those with ADHD. 3. Inattentiveness and anxiety/depression increased the risk of functional impairments in children with ADHD (full syndrome/subthreshold), while a higher fat-free mass index and skeletal muscle-to-body fat ratio reduced the risk.

4.
J Alzheimers Dis ; 101(2): 637-649, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39213067

RESUMEN

Background: The cholinergic hypothesis is one of the main theories that describe the pathogenesis of Alzheimer's disease (AD). Cholinergic neurons degenerate early and are severely damaged in AD. Despite extensive research, the causes of cholinergic neuron damage and the underlying molecular changes remain unclear. Objective: This study aimed to explore the characteristics and transcriptomic changes in cholinergic neurons derived from human induced pluripotent stem cells (iPSCs) with APP mutation. Methods: Peripheral blood mononuclear cells from patients with AD and healthy individuals were reprogrammed into iPSCs. The iPSCs were differentiated into cholinergic neurons. Cholinergic neurons were stained, neurotoxically tested, and electrophysiologically and transcriptomically analyzed. Results: The iPSCs-derived cholinergic neurons from a patient with AD carrying a mutation in APP displayed enhanced susceptibility to Aß1-42-induced neurotoxicity, characterized by severe neurotoxic effects, such as cell body coagulation and neurite fragmentation. Cholinergic neurons exhibited electrophysiological impairments and neuronal death after 21 days of culture in the AD group. Transcriptome analysis disclosed 883 differentially expressed genes (DEGs, 420 upregulated and 463 downregulated) participating in several signaling pathways implicated in AD pathogenesis. To assess the reliability of RNA sequencing, the expression of 16 target DEGs was validated using qPCR. Finally, the expression of the 8 core genes in different cell types of brain was analyzed by the AlzData database. Conclusions: In this study, iPSCs-derived cholinergic neurons from AD patients with APP mutations exhibit characteristics reminiscent of neurodegenerative disease. Transcriptome analysis revealed the corresponding DEGs and pathways, providing potential biomarkers and therapeutic targets for advancing AD research.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Neuronas Colinérgicas , Células Madre Pluripotentes Inducidas , Mutación , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/patología , Mutación/genética , Perfilación de la Expresión Génica , Transcriptoma , Péptidos beta-Amiloides/metabolismo , Diferenciación Celular/genética , Masculino , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Femenino
5.
Biotechnol Adv ; 75: 108416, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39033835

RESUMEN

Glycosaminoglycans (GAGs) are extensively utilized in clinical, cosmetic, and healthcare field, as well as in the treatment of thrombosis, osteoarthritis, rheumatism, and cancer. The biological production of GAGs is a strategy that has garnered significant attention due to its numerous advantages over traditional preparation methods. In this review, we embark on a journey to decode the intricate molecular symphony that orchestrates the biosynthesis of glycosaminoglycans. By unraveling the complex interplay of related enzymes and thorough excavation of the intricate metabolic cascades involved, GAGs chain aggregation and transportation, which efficiently and controllably modulate GAGs sulfation patterns involved in biosynthetic pathway, we endeavor to offer a thorough comprehension of how these remarkable GAGs are intricately assembled and pushes the boundaries of our understanding in GAGs biosynthesis.


Asunto(s)
Glicosaminoglicanos , Glicosaminoglicanos/biosíntesis , Glicosaminoglicanos/metabolismo , Humanos , Vías Biosintéticas , Animales , Polisacáridos/biosíntesis , Polisacáridos/metabolismo
6.
Polymers (Basel) ; 16(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000688

RESUMEN

Microplastics' spreading in the ocean is currently causing significant damage to organisms and ecosystems around the world. To address this oceanic issue, there is a current focus on marine degradable plastics. Polycaprolactone (PCL) is a marine degradable plastic that is attracting attention. To further improve the biodegradability of PCL, we selected a completely new protein that has not been used before as a functional filler to incorporate it into PCL, aiming to develop an environmentally friendly biocomposite material. This novel protein is derived from the mucus bubbles of the violet sea snail (VSS, Janthina globosa), which is a strong bio-derived material that is 100% degradable in the sea environment by microorganisms. Two types of PCL/bubble composites, PCL/b1 and PCL/b5, were prepared with mass ratios of PCL to bubble powder of 99:1 and 95:5, respectively. We investigated the thermal properties, mechanical properties, biodegradability, surface structure, and crystal structure of the developed PCL/bubble composites. The maximum biochemical oxygen demand (BOD) degradation for PCL/b5 reached 96%, 1.74 times that of pure PCL (≈55%), clearly indicating that the addition of protein fillers significantly enhanced the biodegradability of PCL. The surface morphology observation results through scanning electron microscopy (SEM) definitely confirmed the occurrence of degradation, and it was found that PCL/b5 underwent more significant degradation compared to pure PCL. The water contact angle measurement results exhibited that all sheets were hydrophobic (water contact angle > 90°) before the BOD test and showed the changes in surface structure after the BOD test due to the newly generated indentations on the surface, which led to an increase in surface toughness and, consequently, an increase in surface hydrophobility. A crystal structure analysis by wide-angle X-ray scattering (WAXS) discovered that the amorphous regions were decomposed first during the BOD test, and more amorphous regions were decomposed in PCL/b5 than in PCL, owing to the addition of the bubble protein fillers from the VSS. The differential scanning calorimeter (DSC) and thermal gravimetric analysis (TGA) results suggested that the addition of mucus bubble protein fillers had only a slight impact on the thermal properties of PCL. In terms of mechanical properties, compared to pure PCL, the mucus-bubble-filler-added composites PCL/b1 and PCL/b5 exhibited slightly decreased values. Although the biodegradability of PCL was significantly improved by adding the protein fillers from mucus bubbles of the VSS, enhancing the mechanical properties at the same time poses the next challenging issue.

7.
Gut Microbes ; 16(1): 2379633, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39024479

RESUMEN

Gut microbiota-derived extracellular vesicles (mEVs) are reported to regulate inflammatory response by delivering bacterial products into host cells. The complement receptor of the immunoglobulin superfamily macrophages (CRIg+ Mφ) could clear invading bacteria and their derivatives. Here, we investigate the role of CRIg+ Mφ and the mechanism by which mEVs regulate intestinal inflammation. We found that it is exacerbated in IBD patients and colitis mice by mEVs' leakage from disturbed gut microbiota, enriching microbial DNA in the intestinal mucosa. CRIg+ Mφ significantly decrease in IBD patients, allowing the spread of mEVs into the mucosa. The microbial DNA within mEVs is the key trigger for inflammation and barrier function damage. The cGAS/STING pathway is crucial in mEVs-mediated inflammatory injury. Blocking cGAS/STING signaling effectively alleviates inflammation caused by mEVs leakage and CRIg+ Mφ deficiency. Microbial DNA-containing mEVs, along with CRIg+ Mφ deficiency, stimulate inflammation in IBD, with the cGAS/STING pathway playing a crucial role.


Asunto(s)
ADN Bacteriano , Vesículas Extracelulares , Microbioma Gastrointestinal , Inflamación , Enfermedades Inflamatorias del Intestino , Mucosa Intestinal , Macrófagos , Proteínas de la Membrana , Nucleotidiltransferasas , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/inmunología , Animales , Ratones , Macrófagos/inmunología , Macrófagos/microbiología , Macrófagos/metabolismo , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Inflamatorias del Intestino/patología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/inmunología , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Mucosa Intestinal/microbiología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Mucosa Intestinal/inmunología , Inflamación/microbiología , Inflamación/metabolismo , ADN Bacteriano/genética , Ratones Endogámicos C57BL , Masculino , Femenino , Transducción de Señal , Colitis/microbiología , Colitis/patología
8.
BMJ Open ; 14(7): e082404, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39002963

RESUMEN

INTRODUCTION: The efficacy of multitarget neuroprotective drug DL-3-n-butylphthalide (NBP) in improving cognitive function has been confirmed in patients with vascular cognitive impairment without dementia. However, its efficacy in patients with symptomatic predementia phase of Alzheimer's disease remains uncertain. This study aims to evaluate the efficacy and safety of NBP in improving cognitive function in patients with mild cognitive impairment (MCI) through a clinical randomised controlled trail. METHODS AND ANALYSIS: This study is a 12-month, randomised, double-blind, placebo-controlled, multicentric trial, involving 270 patients with MCI. Subjects are randomly assigned to receive either NBP soft capsule (200 mg, three times per day) or placebo with an allocation ratio of 1:1. The efficacy and safety of NBP are assessed by comparing the results of neuropsychological, neuroimaging and laboratory tests between the two groups. The primary endpoint is the change in Alzheimer's Disease Assessment Scale-Cognitive Subscale after 12 months. All patients will be monitored for adverse events. ETHICS AND DISSEMINATION: This study involving human participants has been reviewed and approved by Ethics Committee of Xuan Wu Hospital (No.2017058). The participants provide their written informed consent to participate in this study. Results will be published in peer-reviewed medical journals and disseminated to healthcare professionals at local and international conferences. PROTOCOL VERSION: V 3.0, 3 September 2022. TRIAL REGISTRATION NUMBER: ChiCTR1800018362.


Asunto(s)
Benzofuranos , Disfunción Cognitiva , Fármacos Neuroprotectores , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Benzofuranos/uso terapéutico , Benzofuranos/efectos adversos , Cognición/efectos de los fármacos , Disfunción Cognitiva/tratamiento farmacológico , Método Doble Ciego , Estudios Multicéntricos como Asunto , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/efectos adversos , Pruebas Neuropsicológicas , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento
9.
Heliyon ; 10(13): e33687, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39040243

RESUMEN

Purpose: Gemcitabine is a basic chemotherapy drug for pancreatic cancer (PC), but resistance is common and causes tumor recurrence and metastasis. Therefore, it is significant to explore gemcitabine resistance-related molecules for individualized treatment and prognosis assessment of PC. Methods: In this study, transcriptome sequencing and TCGA database analysis were performed, and a differentiated gene AHNAK2 was screened. MEXPRESS database, tissue microarray analysis, and CIBERSORT and TIMER databases were used to correlate AHNAK2 expression with clinicopathological features and prognosis and immune infiltration of PC. Enrichment analysis was used to investigate the significant biological processes associated with AHNAK2. Results: AHNAK2 was highly expressed in gemcitabine-resistant cells. High expression of AHNAK2 increased the risk of poor overall survival (OS) and progression-free survival (PFS) in PC. Clinicopathologic analysis revealed that AHNAK2 correlated with KRAS, TP53 mutations, histologic type, short OS, N stage, and elevated CA199 levels in PC. Knockdown of AHNAK2 inhibited the ability of cell proliferation and colony formation and enhanced the toxic effect of gemcitabine in PC. Meanwhile, the knockdown of AHNAK2 expression enhanced cell-ECM adhesion, inhibited cell-cell adhesion, and downregulated the KRAS/p53 signaling pathway in PC. Furthermore, AHNAK2 was correlated with immune infiltration, especially B cells and macrophages. Conclusions: Our study unveils for the first time the pivotal role of AHNAK2 in PC, particularly its association with gemcitabine resistance, clinical prognosis, and immune infiltration. AHNAK2 not only drives the proliferation and drug resistance of PC cells by potentially activating the KRAS/p53 pathway but also significantly impacts cell-cell and cell- ECM adhesion. Additionally, AHNAK2 plays a crucial role in modulating the tumor immune microenvironment. These insights underscore AHNAK2's unique potential as a novel therapeutic target for overcoming gemcitabine resistance, offering new perspectives for PC treatment strategies.

10.
Small ; : e2403993, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-39031746

RESUMEN

Polyvinylidene fluoride (PVDF) has unique electrochemical oxidation resistance and is the only binder for high-voltage cathode materials in the battery industry for a long time. However, PVDF still has some drawbacks, such as environmental limitations on fluorine, strict requirements for environmental humidity, weak adhesion, and poor lithium ion conductivity. Herein, the long-standing issues associated with high-voltage lithium cobalt oxide (LiCoO2; LCO) are successfully addressed by incorporating phenolphthalein polyetherketone (PEK-C) and phenolphthalein polyethersulfone (PES-C) as binder materials. These binders have unexpected electrochemical oxidation resistance and robustness adhesion, ensure uniform coverage on the surface of LCO, and establish an effective and fast ion-conductive CEI/binder composite layer. By leveraging these favorable characteristics, electrodes based on polyarylether binders demonstrate significantly better cycling and rate performance than their counterparts using traditional PVDF binders. The fast ion-conductive CEI/binder composite layer effectively mitigates adverse reactions at the cathode-electrolyte interface. As anticipated, batteries utilizing phenolphthalein polyarylether binders exhibit capacity retention rates of 88.92% and 80.4% after 200 and 500 cycles at 4.5 and 4.6 V, respectively. The application of binders, such as polyarylether binders, offers a straightforward and inspiring approach for designing high-energy-density battery materials.

11.
Front Aging Neurosci ; 16: 1423139, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39076205

RESUMEN

Background: Alzheimer's disease (AD) is the predominant cause of dementia on a global scale, significantly impacting the health of the elderly population. The pathogenesis of AD is closely linked to neuroinflammation. The present study employs a bibliometric analysis to examine research pertaining to neuroinflammation and AD within the last decade, with the objective of providing a comprehensive overview of the current research profile, hotspots and trends. Methods: This research conducted a comprehensive review of publications within the Science Citation Index Expanded of the Web of Science Core Collection Database spanning the years 2014 to 2024. Bibliometric analyses were performed using VOSviewer (version 1.6.19) and CiteSpace (version 6.3.R1) software to visualize data on countries, institutions, authors, journals, keywords, and references. Results: A total of 3,833 publications on neuroinflammation and AD were included from January 2014 to January 2024. Publications were mainly from the United States and China. Zetterberg, Henrik emerged as the author with the highest publication output, while Edison, Paul was identified as the most cited author. The most productive journal was Journal of Alzheimers Disease, and the most co-cited was Journal of Neuroinflammation. Research hotspot focused on microglia, mouse models, oxidative stress, and amyloid-beta through keyword analysis. Additionally, keywords such as blood-brain barrier and tau protein exhibited prolonged citation bursts from 2022 to 2024. Conclusion: This study provides a comprehensive review of the last 10 years of research on neuroinflammation and AD, including the number and impact of research findings, research hotspots, and future trends. The quantity of publications in this field is increasing, mainly in the United States and China, and there is a need to further strengthen close cooperation with different countries and institutions worldwide. Presently, research hotspots are primarily concentrated on microglia, with a focus on inhibiting their pro-inflammatory responses and promoting their anti-inflammatory functions as a potential direction for future investigations.

12.
Stem Cell Res ; 79: 103501, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39029293

RESUMEN

Apolipoprotein E (APOE)is the gene with greatest genetic risk for Alzheimer's disease (AD). We successfully established a human induced pluripotent stem cell(iPSC) line from a woman mutated by APOE gene. The cell line was isolated from this woman's peripheral blood mononuclear cells using a non-integrated Sendai virus, which retained the original genotype, showed a normal karyotype, highly expressed pluripotent markers and could differentiate into three germ layers.


Asunto(s)
Apolipoproteínas E , Células Madre Pluripotentes Inducidas , Mutación , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Femenino , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Línea Celular , Diferenciación Celular , Cariotipo , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/citología
13.
J Cell Mol Med ; 28(9): e18374, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38722288

RESUMEN

The majority of advanced breast cancers exhibit strong aggressiveness, heterogeneity, and drug resistance, and currently, the lack of effective treatment strategies is one of the main challenges that cancer research must face. Therefore, developing a feasible preclinical model to explore tailored treatments for refractory breast cancer is urgently needed. We established organoid biobanks from 17 patients with breast cancer and characterized them by immunohistochemistry (IHC) and next generation sequencing (NGS). In addition, we in the first combination of patient-derived organoids (PDOs) with mini-patient-derived xenografts (Mini-PDXs) for the rapid and precise screening of drug sensitivity. We confirmed that breast cancer organoids are a high-fidelity three-dimension (3D) model in vitro that recapitulates the original tumour's histological and genetic features. In addition, for a heavily pretreated patient with advanced drug-resistant breast cancer, we combined PDO and Mini-PDX models to identify potentially effective combinations of therapeutic agents for this patient who were alpelisib + fulvestrant. In the drug sensitivity experiment of organoids, we observed changes in the PI3K/AKT/mTOR signalling axis and oestrogen receptor (ER) protein expression levels, which further verified the reliability of the screening results. Our study demonstrates that the PDO combined with mini-PDX model offers a rapid and precise drug screening platform that holds promise for personalized medicine, improving patient outcomes and addressing the urgent need for effective therapies in advanced breast cancer.


Asunto(s)
Neoplasias de la Mama , Organoides , Medicina de Precisión , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Femenino , Organoides/efectos de los fármacos , Organoides/patología , Organoides/metabolismo , Medicina de Precisión/métodos , Animales , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones , Resistencia a Antineoplásicos/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Persona de Mediana Edad
14.
Cancer Immunol Immunother ; 73(7): 127, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739169

RESUMEN

Lactate dehydrogenase B (LDHB) reversibly catalyzes the conversion of pyruvate to lactate or lactate to pyruvate and expressed in various malignancies. However, the role of LDHB in modulating immune responses against hepatocellular carcinoma (HCC) remains largely unknown. Here, we found that down-regulation of lactate dehydrogenase B (LDHB) was coupled with the promoter hypermethylation and knocking down the DNA methyltransferase 3A (DNMT 3A) restored LDHB expression levels in HCC cell lines. Bioinformatics analysis of the HCC cohort from The Cancer Genome Atlas revealed a significant positive correlation between LDHB expression and immune regulatory signaling pathways and immune cell infiltrations. Moreover, immune checkpoint inhibitors (ICIs) have shown considerable promise for HCC treatment and patients with higher LDHB expression responded better to ICIs. Finally, we found that overexpression of LDHB suppressed HCC growth in immunocompetent but not in immunodeficient mice, suggesting that the host immune system was involved in the LDHB-medicated tumor suppression. Our findings indicate that DNMT3A-mediated epigenetic silencing of LDHB may contribute to HCC progression through remodeling the tumor immune microenvironment, and LDHB may become a potential prognostic biomarker and therapeutic target for HCC immunotherapy.


Asunto(s)
Carcinoma Hepatocelular , ADN Metiltransferasa 3A , Epigénesis Genética , L-Lactato Deshidrogenasa , Neoplasias Hepáticas , Microambiente Tumoral , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/metabolismo , Microambiente Tumoral/inmunología , Humanos , Animales , Ratones , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/genética , ADN Metiltransferasa 3A/metabolismo , Regulación Neoplásica de la Expresión Génica , Metilación de ADN , Isoenzimas/genética , Isoenzimas/metabolismo , Línea Celular Tumoral , Silenciador del Gen , Pronóstico
15.
J Exp Clin Cancer Res ; 43(1): 111, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605400

RESUMEN

BACKGROUND: The regulatory role of N6-methyladenosine (m6A) modification in the onset and progression of cancer has garnered increasing attention in recent years. However, the specific role of m6A modification in pulmonary metastasis of colorectal cancer remains unclear. METHODS: This study identified differential m6A gene expression between primary colorectal cancer and its pulmonary metastases using transcriptome sequencing and immunohistochemistry. We investigated the biological function of METTL3 gene both in vitro and in vivo using assays such as CCK-8, colony formation, wound healing, EDU, transwell, and apoptosis, along with a BALB/c nude mouse model. The regulatory mechanisms of METTL3 in colorectal cancer pulmonary metastasis were studied using methods like methylated RNA immunoprecipitation quantitative reverse transcription PCR, RNA stability analysis, luciferase reporter gene assay, Enzyme-Linked Immunosorbent Assay, and quantitative reverse transcription PCR. RESULTS: The study revealed high expression of METTL3 and YTHDF1 in the tumors of patients with pulmonary metastasis of colorectal cancer. METTL3 promotes epithelial-mesenchymal transition in colorectal cancer by m6A modification of SNAIL mRNA, where SNAIL enhances the secretion of CXCL2 through the NF-κB pathway. Additionally, colorectal cancer cells expressing METTL3 recruit M2-type macrophages by secreting CXCL2. CONCLUSION: METTL3 facilitates pulmonary metastasis of colorectal cancer by targeting the m6A-Snail-CXCL2 axis to recruit M2-type immunosuppressive macrophages. This finding offers new research directions and potential therapeutic targets for colorectal cancer treatment.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Pulmonares , Animales , Humanos , Ratones , Quimiocina CXCL2 , Neoplasias Colorrectales/genética , Neoplasias Pulmonares/genética , Metiltransferasas/genética
16.
Biotechnol Bioeng ; 121(7): 2163-2174, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38595326

RESUMEN

Pathogenic bacterial membrane proteins (MPs) are a class of vaccine and antibiotic development targets with widespread clinical application. However, the inherent hydrophobicity of MPs poses a challenge to fold correctly in living cells. Herein, we present a comprehensive method to improve the soluble form of MP antigen by rationally designing multi-epitope chimeric antigen (ChA) and screening two classes of protein-assisting folding element. The study uses a homologous protein antigen as a functional scaffold to generate a ChA possessing four epitopes from transferrin-binding protein A of Glaesserella parasuis. Our engineered strain, which co-expresses P17 tagged-ChA and endogenous chaperones groEL-ES, yields a 0.346 g/L highly soluble ChA with the property of HPS-positive serum reaction. Moreover, the protein titer of ChA reaches 4.27 g/L with >90% soluble proportion in 5-L bioreactor, which is the highest titer reported so far. The results highlight a timely approach to design and improve the soluble expression of MP antigen in industrially viable applications.


Asunto(s)
Antígenos Bacterianos , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Reactores Biológicos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Escherichia coli/genética , Escherichia coli/metabolismo , Clostridiales/genética , Clostridiales/metabolismo , Solubilidad
17.
Front Immunol ; 15: 1344272, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38545114

RESUMEN

Immune Checkpoint Inhibitors (ICIs) therapy has advanced significantly in treating malignant tumors, though most 'cold' tumors show no response. This resistance mainly arises from the varied immune evasion mechanisms. Hence, understanding the transformation from 'cold' to 'hot' tumors is essential in developing effective cancer treatments. Furthermore, tumor immune profiling is critical, requiring a range of diagnostic techniques and biomarkers for evaluation. The success of immunotherapy relies on T cells' ability to recognize and eliminate tumor cells. In 'cold' tumors, the absence of T cell infiltration leads to the ineffectiveness of ICI therapy. Addressing these challenges, especially the impairment in T cell activation and homing, is crucial to enhance ICI therapy's efficacy. Concurrently, strategies to convert 'cold' tumors into 'hot' ones, including boosting T cell infiltration and adoptive therapies such as T cell-recruiting bispecific antibodies and Chimeric Antigen Receptor (CAR) T cells, are under extensive exploration. Thus, identifying key factors that impact tumor T cell infiltration is vital for creating effective treatments targeting 'cold' tumors.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias/tratamiento farmacológico , Linfocitos T , Inmunoterapia/métodos
18.
Stem Cell Res ; 77: 103398, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38552354

RESUMEN

Genetic polymorphism of apolipoprotein E (APOE) confers differential susceptibility to Alzheimer's disease (AD), and APOE ɛ4 variants is the most powerful risk factor for this disease. Here, we report the generation of a human induced pluripotent stem cell (iPSC) line carrying the APOE ɛ4/ɛ4 genotype from peripheral blood mononuclear cells (PBMCs) isolated from a male with a family history of AD utilizing non-integrative Sendai virus vector. The iPSC maintains their original genotype, highly express endogenous pluripotency markers, displays a normal karyotype, and retains the ability to differentiate into cells representative of the three germ layers.


Asunto(s)
Apolipoproteínas E , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Masculino , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Mutación , Línea Celular , Diferenciación Celular , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/citología
19.
Artículo en Inglés | MEDLINE | ID: mdl-38411935

RESUMEN

Hyaluronate lyase (HA lyase) has potential in the industrial processing of hyaluronan. In this study, HylP, an HA lyase from Streptococcus pyogenes phage (SPB) was successfully expressed in Bacillus subtilis. To improve the extracellular enzyme activity of HylP in B. subtilis, signal peptide engineering systematic optimization was carried out, and cultured it from shake flasks and fermenters, followed by purification, characterization, and analysis of degradation products. The results showed that the replacement of the signal peptide increased the extracellular enzyme activity of HylP from 1.0 × 104 U/mL to 1.86 × 104 U/mL in the shake flask assay, and using a 20 L fermenter in a batch fermentation process, the extracellular enzyme activity achieved the level of 1.07 × 105 U/mL. HylP exhibited significant thermal and pH stability in the temperature range of 40 °C and pH range of 4-8, respectively. The enzyme showed optimum activity at 40 °C and pH 6, with significant activity in the presence of Na+, Mg2+, and Co2+ ions. Degradation analysis showed that HylP efficiently degraded hyaluronan as an endonuclease, releasing unsaturated disaccharides. These comprehensive findings underscore the substantial industrial potential of HylP for hyaluronan processing applications, offering valuable insights into enzyme characterization and optimization of expression for potential industrial utilization.

20.
Int J Biol Macromol ; 262(Pt 1): 129928, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309393

RESUMEN

Trehalase has attracted widespread attention in medicine, agriculture, food, and ethanol industry due to its ability to specifically degrade trehalose. Efficient expression of trehalase remains a challenge. In this study, a putative trehalase-encoding gene (Tre-zm) from Zunongwangia mangrovi was explored using gene-mining strategy and heterologously expressed in E. coli. Trehalase activity reached 3374 U·mL-1 after fermentation optimization. The scale-up fermentation in a 15 L fermenter was achieved with a trehalase production of 15,068 U·mL-1. The recombinant trehalase TreZM was purified and characterized. It displayed optimal activity at 35 °C and pH 8.5, with Mn2+, Sn2+, Na+, and Fe2+ promoting the activity. Notably, TreZM showed significant inhibition effect on biofilm forming of Staphylococcus epidermidis. The combination of TreZM with a low concentration of antibiotics could inhibit 70 % biofilm formation of Staphylococcus epidermidis and 28 % of Pseudomonas aeruginosa. Hence, this study provides a promising candidate for industrial production of trehalase and highlights its potential application to control harmful biofilms.


Asunto(s)
Escherichia coli , Trehalasa , Trehalasa/química , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentación , Trehalosa/farmacología , Trehalosa/metabolismo , Biopelículas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA