Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Nanobiotechnology ; 21(1): 479, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38093320

RESUMEN

Vaccination is still the most promising strategy for combating influenza virus pandemics. However, the highly variable characteristics of influenza virus make it difficult to develop antibody-based universal vaccines, until now. Lung tissue-resident memory T cells (TRM), which actively survey tissues for signs of infection and react rapidly to eliminate infected cells without the need for a systemic immune reaction, have recently drawn increasing attention towards the development of a universal influenza vaccine. We previously designed a sequential immunization strategy based on orally administered Salmonella vectored vaccine candidates. To further improve our vaccine design, in this study, we used two different dendritic cell (DC)-targeting strategies, including a single chain variable fragment (scFv) targeting the surface marker DC-CD11c and DC targeting peptide 3 (DCpep3). Oral immunization with Salmonella harboring plasmid pYL230 (S230), which displayed scFv-CD11c on the bacterial surface, induced dramatic production of spleen effector memory T cells (TEM). On the other hand, intranasal boost immunization using purified DCpep3-decorated 3M2e-ferritin nanoparticles in mice orally immunized twice with S230 (S230inDC) significantly stimulated the differentiation of lung CD11b+ DCs, increased intracellular IL-17 production in lung CD4+ T cells and elevated chemokine production in lung sections, such as CXCL13 and CXCL15, as determined by RNAseq and qRT‒PCR assays, resulting in significantly increased percentages of lung TRMs, which could provide efficient protection against influenza virus challenge. The dual DC targeting strategy, together with the sequential immunization approach described in this study, provides us with a novel "prime and pull" strategy for addressing the production of protective TRM cells in vaccine design.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Vacunas contra la Influenza , Infecciones por Orthomyxoviridae , Ratones , Animales , Células T de Memoria , Pulmón , Células Dendríticas , Infecciones por Orthomyxoviridae/prevención & control
2.
Microb Pathog ; 181: 106176, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37244492

RESUMEN

Aeromonas veronii (A. veronii), a highly pathogenic bacteria with a wide range of hosts, widely exists in the environment of humans, animals and aquatic animals, and can cause a variety of diseases. In this study, the receptor regulator ompR in the envZ/ompR of two-component system was selected to construct a mutant strain (Δ ompR) and a complement strain (C-ompR) to explore the regulatory effect of ompR on the biological characteristics and virulence of TH0426. The results showed that the ability of biofilm formation and osmotic stress of TH0426 were significantly reduced (P < 0.001), the resistance to ceftriaxone and neomycin were slightly down-regulate when the ompR gene was deleted. At the same time, animal pathogenicity experiments showed that the virulence of TH0426 was significantly down-regulated (P < 0.001). These results indicated that ompR gene regulates the biofilm formation of TH0426, and regulates some biological characteristics of TH0426, including drug sensitivity, resistance to osmotic stress, and also affects its virulence.


Asunto(s)
Aeromonas veronii , Biopelículas , Animales , Humanos , Aeromonas veronii/genética , Virulencia/genética , Agregación Celular , Resistencia a Medicamentos , Proteínas Bacterianas/genética
3.
Fish Physiol Biochem ; 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36414818

RESUMEN

This is the first study to explore the positive effects of ginseng stem and leaf saponins (GSLS) on antioxidant capability, immunity, and disease resistance of crucian carp. Seven hundred fifty crucian carps (initial body weight: 25 ± 0.15 g (mean ± SE)) were randomly allocated into five groups with three replicates each; five diets supplemented with the final concentration of 0, 1, 2, 4, and 8 g/kg GSLS were fed to crucian carp for 5 weeks. The results demonstrated that, at a concentration of 8 g/kg, the contents of IgM, C4, SOD, GSH-Px, and the activity of AKP in serum of crucian carp gradually increased at 7, 14, 21, 28, and 35 days, and the expression of immune-relative cytokine genes (TNF-α, IL-10, IFN-γ) in the liver, spleen, and the intestinal tract also had a significant up-regulation (P < 0.05), and which were significant difference compared with control (P < 0.05). The above results demonstrated that dietary GSLS showed enhancement effects on the antioxidant and anti-inflammatory capability, and innate immune response of crucian carp. The feed of 8 g/kg GSLS for 1 week could improve the survival rate 44% more than the control group when crucian carp infected Aeromonas hydrophila (A. hydrophila). In conclusion, the addition of GSLS at a concentration of 8 g/kg in the diet improve immune-related enzyme activity better, immune-relative cytokine expression, and disease resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA