Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Int J Pharm ; 628: 122308, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36265666

RESUMEN

The use of proteins such as human serum albumin (HSA) to form nanometric systems seems very promising since they are non-toxic, biodegradable and have no antigenic activity. This molecule is ideal to transport insoluble drugs such as melatonin (Mel), which has antiapoptotic and antioxidant properties and appears promising for the treatment of neurodegenerative eye diseases. The objective of this study was to obtain nanoparticulate systems loaded with Mel, improving the conventional desolvation method. Systems were stabilised using two different strategies: one through the use of Eudragit S100 as a cross-linking agent and the other through thermal stabilisation. The systems thus obtained (Np-HSA-Eu-Mel and Np-HSA-Mel, respectively) were characterised and compared in terms of physicochemical and pharmacotechnical parameters. Whitish colloidal dispersions of nanometric size (≈170 nm), spherical shape, and monodisperse population were obtained. Besides, the pH was close to neutrality reaching 20 % drug encapsulation whereas the process performance was higher than 80 %. In FT-IR studies, thermal analysis and X-ray diffraction (XRD), the incorporation of the drug in the cavities of the nanoparticles could be evidenced. Regarding the physical stability of nanoparticles, for Np-HSA-Eu-Mel instability was observed at pH > 7. However, Np-HSA-Mel was able to remain stable at different pH levels. Mel release from these systems was consequently affected, where the former released faster than the active compared to the last. On the other hand, it was observed that the drying process (lyophilization in this case) applied to the nanoparticles suspensions does not affect their original properties after redispersion over a three months period. Likewise, the formulation did not produce irritation when administered topically, whereas when administered subconjunctivally, only slight irritation was observed 24 h after administration. According to the result of this study, the Np-HSA-Mel formulation could achieve advantageous properties as a vehicle for the transport of insoluble drugs for the treatment of neurodegenerative diseases at the ocular level.


Asunto(s)
Melatonina , Nanopartículas , Humanos , Albúmina Sérica Humana/química , Administración Oftálmica , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas/química , Portadores de Fármacos/química , Tamaño de la Partícula
2.
Pharm Res ; 39(9): 2277-2290, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35851629

RESUMEN

PURPOSE: 3D printing (3DP) makes it possible to obtain systems that are not achievable with current conventional methods, one of them, sustained release floating systems. Floating systems using ricobendazole (RBZ) as a model drug and a combination of polymers were designed and obtained by melt solidification printing technique (MESO-PP). METHODS: Four different MESO-PP inks were formulated based on combinations of the polymers Gelucire 43/01 and Gelucire 50/13 in different ratios. For each of the formulated inks, physicochemical characterization was performed by thermal analysis (thermogravimetric analysis [TGA] and differential scanning calorimetry [DSC]), fourier transform infrared spectrophotometer (FTIR) and X-ray diffraction (XRD). Pharmaceutical characterization was performed by in vitro assays to determine pharmaceutically relevant parameters. These parameters were calculated by applying mathematical models developed to evaluate in vitro drug release profiles. On the other hand, a physiologically based pharmacokinetic (PBPK) model was developed to predict the in vivo performance of RBZ loaded in the different inks by determining the Cmax, and the AUC0-∞. RESULTS: By increasing the proportion of Gelucire 50/13 co-surfactant in the mixtures (the proportion in Ink 1 was 33%, while the proportion in Ink 4 was 80%), the dissolution capacity of RBZ increases substantially, decreasing flotation times. CONCLUSION: MESO-PP produced ink 1 (50% Gelucire 43/01, 25% Gelucire 50/13 and 25% RBZ), which has a zero-order release (RR = 0.180%/min) and the longest flotation time (545 ± 23 min), and in turn would produce a significant increase in oral absorption of the drug, with an AUC0-∞ 2.16-fold higher than that obtained in animals treated with RBZ loaded in conventional tablets.


Asunto(s)
Excipientes , Tinta , Albendazol/análogos & derivados , Animales , Preparaciones de Acción Retardada/química , Excipientes/química , Polímeros , Impresión Tridimensional , Tensoactivos , Comprimidos
3.
Ther Deliv ; 12(8): 597-610, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34286600

RESUMEN

Aim: Understanding a drug dissolution process from solid dispersions (SD) to develop formulations with predictable in vivo performance. Materials & methods: Dissolution data of fenbendazole released from the SDs and the control physical mixtures were analyzed using the Lumped mathematical model to estimate the parameters of pharmaceutical relevance. Results: The fit data obtained by Lumped model showed that all SDs have a unique dissolution profile with an error of ±4.1% and an initial release rate 500-times higher than the pure drug, without incidence of drug/polymer ratio or polymer type. Conclusion: The Lumped model helped to understand that the main factor influencing the fenbendazole release was the type formulation (SD or physical mixture), regardless of the type or amount of polymer used.


Asunto(s)
Fenbendazol , Preparaciones Farmacéuticas , Liberación de Fármacos , Polímeros , Solubilidad
4.
Ther Deliv ; 11(12): 779-790, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33198601

RESUMEN

Background: Leishmaniasis is a neglected tropical disease and its cutaneous form manifests as ulcers or nodules, generally in exposed parts of the body. This work aimed to develop ivermectin (IVM) thermosensitive hydrogels as topical formulations to improve cutaneous leishmaniasis treatment. Materials & methods: Hydrogels based on poloxamers 407 and 188 with different concentrations of IVM were prepared and rheologically characterized. The IVM release profiles were obtained and mathematically analyzed using the Lumped model. Results: The formulation containing 1.5% w/w of IVM presented an adequate gelling temperature, an optimal complex viscosity and elastic modulus. Hydrogels allowed to modulate the release of IVM. Conclusion: IVM thermosensitive hydrogels can be considered a valuable alternative to improve the treatment of cutaneous leishmaniasis.


Asunto(s)
Ivermectina , Leishmaniasis Cutánea , Preparaciones de Acción Retardada , Humanos , Hidrogeles , Leishmaniasis Cutánea/tratamiento farmacológico , Poloxámero
5.
J Pharm Sci ; 109(9): 2819-2826, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32534884

RESUMEN

Mathematical models are an important tool in pharmaceutical formulations development, to evaluate in vitro and in vivo drug release processes and to optimize the design of new systems. Dome Matrix technology allows the combination of modules with different types of drugs, doses, and releases kinetics. This work aimed to design drug release systems based on Dome Matrix technology, with different swelling and erosion properties, to obtain complex drug release profiles and analyze them with simple mathematical models. Most of the release profiles followed a sigmoid curve, with an inflection point corresponding to a change in the release rate behavior. The experimental data were fitted with a simple model recently developed, named the Dual Release model, which consists in the combination of a modified Korsmayer-Peppas model from the beginning to the inflection point and the Lumped model from there until the end. This approach allowed determining relevant pharmaceutical parameters, such as the maximum release rate and the dissolution efficiency, among others. The use of the Dual Release model and the pharmaceutical parameters that characterize the different Dome Matrix modules allows optimizing the choice of the composition and the configuration during the development of a drug delivery system.


Asunto(s)
Sistemas de Liberación de Medicamentos , Tecnología , Preparaciones de Acción Retardada , Composición de Medicamentos , Liberación de Fármacos , Cinética , Solubilidad , Comprimidos
6.
Curr Drug Deliv ; 17(6): 511-522, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32394835

RESUMEN

BACKGROUND: Mathematical modeling in modified drug release is an important tool that allows predicting the release rate of drugs in their surrounding environment and elucidates the transport mechanisms involved in the process. OBJECTIVE: The aim of this work was to develop a mathematical model that allows evaluating the release profile of drugs from polymeric carriers in which the swelling phenomenon is present. METHODS: Swellable matrices based on ionic complexes of alginic acid or carboxymethylcellulose with ciprofloxacin were prepared and the effect of adding the polymer sodium salt on the swelling process and the drug release was evaluated. Experimental data from the ciprofloxacin release profiles were mathematically adjusted, considering the mechanisms involved in each stage of the release process. RESULTS: A proposed model, named "Dual Release" model, was able to properly fit the experimental data of matrices presenting the swelling phenomenon, characterized by an inflection point in their release profile. This entails applying the extended model of Korsmeyer-Peppas to estimate the percentage of drug released from the first experimental point up to the inflection point and then a model called Lumped until the final time, allowing to adequately represent the complete range of the drug release profile. Different parameters of pharmaceutical relevance were calculated using the proposed model to compare the profiles of the studied matrices. CONCLUSION: The "Dual Release" model proposed in this article can be used to predict the behavior of complex systems in which different mechanisms are involved in the release process.


Asunto(s)
Ácido Algínico/química , Ciprofloxacina/química , Preparaciones de Acción Retardada/química , Polielectrolitos/química , Liberación de Fármacos , Humanos , Modelos Teóricos
7.
Saudi Pharm J ; 27(5): 694-701, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31297024

RESUMEN

Controlled drug delivery aims to achieve an effective drug concentration in the action site for a desired period of time, while minimizing side effects. In this contribution, biodegradable poly(3-hydroxybutyrate) films were evaluated as a reservoir platform for dexamethasone controlled release. These systems were morphological and physicochemically characterized. In vitro release assays were performed for five different percentages of drug in the films and data were fitted by a mathematical model developed and validated by our research group. When the profiles were normalized, a single curve properly fitted all the experimental data. Using this unique curve, the dissolution efficiency (DE), the time to release a given amount of drug (tX% ), and the mean dissolution time were calculated. Furthermore, the dissolution rate, the initial dissolution rate (a%) and the intrinsic dissolution rate were determined. The a% mean value was 1.968 × 10-2% released/min, t80% was about 14 days, and the DE was 59.6% at 14 days and 66.5% at 20 days. After 2 days, when approximately 40% of the drug was released, the dissolution rate decreased about 60% respect to the initial value. The poly(3-hydroxybutyrate) platforms behaved as an appropriate system to release and control the dexamethasone delivery, suggesting that they could be an alternative to improve drug therapy.

8.
Ther Deliv ; 9(9): 623-638, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30189808

RESUMEN

AIM: Solid dispersions using Poloxamer 407 as carrier were developed to improve albendazole (ABZ) solubility and dissolution profiles. METHODS: ABZ/poloxamer solid dispersions were prepared, and dissolution profiles were mathematically modeled and compared with physical mixtures, pharmaceutical ABZ and a commercial formulation. RESULTS: Poloxamer 407 increased exponentially ABZ solubility, in about 400% when 95% w/w of polymer compared with its absence. Solid dispersions initial dissolution rate was three to 20-fold higher than physical mixtures, the drug and the commercial formulation. All the solid dispersions required less than 2.2 min to reach an 80% of ABZ dissolution, while the commercial formulation needed around 40 min. CONCLUSION: Solid dispersions improved ABZ solubility and dissolution rate, which could result in a faster absorption and an increased bioavailability.


Asunto(s)
Albendazol/farmacocinética , Portadores de Fármacos/química , Liberación de Fármacos , Poloxámero/química , Absorción Fisicoquímica , Albendazol/administración & dosificación , Albendazol/química , Disponibilidad Biológica , Química Farmacéutica , Composición de Medicamentos/métodos , Solubilidad
9.
J Pharm Sci ; 107(11): 2829-2836, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30005984

RESUMEN

Benznidazole (BZL), the first line drug for Chagas disease treatment, presents a low solubility, limiting the possibilities for its formulation. In this work, solid dispersions' (SDs) technology was exploited to increase BZL kinetic solubility and dissolution rate, seeking for an improvement in its bioperformance. A physical mixture (PM) and an SD using Poloxamer 407 as carrier were prepared and characterized. Dissolution tests were performed, and data were analyzed with the lumped model, which allowed to calculate different parameters of pharmaceutical relevance. A bioactivity assay was also carried out to probe the SD anti-trypanocidal activity. Among the most relevant results, the initial dissolution rate of the BZL SD was near 3, 4 and about 400-fold faster than the PM, a commercial formulation (CF) and an extracted BZL, respectivley. The times needed for an 80% of drug dissolution were 3.6 (SD), 46.4 (PM), and 238.7 min (CF); while the dissolution efficiency values at 30 min were 85.2 (SD), 71.2 (PM), and 65.0% (CF). Survival curves suggested that using Poloxamer 407 as carrier did not alter the anti-trypanocidal activity of BZL. These results allow to conclude that SDs can be an effective platform for immediate release of BZL in an oral administration.


Asunto(s)
Portadores de Fármacos/química , Nitroimidazoles/administración & dosificación , Nitroimidazoles/química , Poloxámero/química , Tripanocidas/administración & dosificación , Tripanocidas/química , Administración Oral , Enfermedad de Chagas/tratamiento farmacológico , Liberación de Fármacos , Humanos , Nitroimidazoles/farmacología , Solubilidad , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Difracción de Rayos X
10.
Artículo en Inglés | MEDLINE | ID: mdl-29531777

RESUMEN

Biofilm systems can be modeled using a variety of analytical and numerical approaches, usually by making simplifying assumptions regarding biofilm heterogeneity and activity as well as effective diffusivity. Inhibition kinetics, albeit common in experimental systems, are rarely considered and analytical approaches are either lacking or consider effective diffusivity of the substrate and the biofilm density to remain constant. To address this obvious knowledge gap an analytical procedure to estimate the effectiveness factor (dimensionless substrate mass flux at the biofilm-fluid interface) was developed for a continuum heterogeneous biofilm with multiple limiting-substrate Monod kinetics to different types of inhibition kinetics. The simple perturbation technique, previously validated to quantify biofilm activity, was applied to systems where either the substrate or the inhibitor is the limiting component, and cases where the inhibitor is a reaction product or the substrate also acts as the inhibitor. Explicit analytical equations are presented for the effectiveness factor estimation and, therefore, the calculation of biomass growth rate or limiting substrate/inhibitor consumption rate, for a given biofilm thickness. The robustness of the new biofilm model was tested using kinetic parameters experimentally determined for the growth of Pseudomonas putida CCRC 14365 on phenol. Several additional cases have been analyzed, including examples where the effectiveness factor can reach values greater than unity, characteristic of systems with inhibition kinetics. Criteria to establish when the effectiveness factor can reach values greater than unity in each of the cases studied are also presented.

11.
Asian J Pharm Sci ; 13(1): 54-62, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32104378

RESUMEN

Mathematical modeling in drug release systems is fundamental in development and optimization of these systems, since it allows to predict drug release rates and to elucidate the physical transport mechanisms involved. In this paper we validate a novel mathematical model that describes progesterone (Prg) controlled release from poly-3-hydroxybutyric acid (PHB) membranes. A statistical analysis was conducted to compare the fitting of our model with six different models and the Akaike information criterion (AIC) was used to find the equation with best-fit. A simple relation between mass and drug released rate was found, which allows predicting the effect of Prg loads on the release behavior. Our proposed model was the one with minimum AIC value, and therefore it was the one that statistically fitted better the experimental data obtained for all the Prg loads tested. Furthermore, the initial release rate was calculated and therefore, the interface mass transfer coefficient estimated and the equilibrium distribution constant of Prg between the PHB and the release medium was also determined. The results lead us to conclude that our proposed model is the one which best fits the experimental data and can be successfully used to describe Prg drug release in PHB membranes.

12.
AAPS PharmSciTech ; 17(4): 898-906, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26729524

RESUMEN

Poly(3-hydroxybutyrate) (PHB) biodegradable polymeric membranes were evaluated as platform for progesterone (Prg)-controlled release. In the design of new drug delivery systems, it is important to understand the mass transport mechanism involved, as well as predict the process kinetics. Drug release experiments were conducted and the experimental results were evaluated using engineering approaches that were extrapolated to the pharmaceutical field by our research group. Membranes were loaded with different Prg concentrations and characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). SEM images showed that membranes have a dense structure before and after the progesterone addition. DSC and FTIR allowed determining the influence of the therapeutic agent in the membrane properties. The in vitro experiments were performed using two different techniques: (A) returning the sample to the receptor solution (constant volume of the delivery medium) and (B) extracting total volume of the receptor solution. In this work, we present a simple and accurate "lumped" second-order kinetic model. This lumped model considers the different mass transport steps involved in drug release systems. The model fits very well the experimental data using any of the two experimental procedures, in the range 0 ≤ t ≤ ∞ or 0 ≤ M t ≤ M ∞. The drug release analysis using our proposed approaches is relevant for establishing in vitro-in vivo correlations in future tests in animals.


Asunto(s)
Ácido 3-Hidroxibutírico/química , Hidroxibutiratos/química , Poliésteres/química , Progesterona/química , Rastreo Diferencial de Calorimetría/métodos , Sistemas de Liberación de Medicamentos/métodos , Cinética , Microscopía Electrónica de Rastreo/métodos , Polímeros/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos
13.
Biotechnol Bioeng ; 111(11): 2252-64, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24888450

RESUMEN

We describe a novel procedure to estimate the net growth rate of biofilms on multiple substrates. The approach is based on diffusion-reaction mass balances for chemical species in a continuum biofilm model with reaction kinetics corresponding to a Double-Monod expression. This analytical model considers a heterogeneous biofilm with variable distributions of biofilm density, activity, and effective diffusivity as a function of depth. We present the procedure to estimate the effectiveness factor analytically and compare the outcome with values obtained by the application of a rigorous numerical computational method using several theoretical examples and a test case. A comparison of the profiles of the effectiveness factor as a function of the Thiele modulus, φ, revealed that the activity of a homogeneous biofilm could be as much as 42% higher than that of a heterogeneous biofilm, under the given conditions. The maximum relative error between numerical and estimated effectiveness factor was 2.03% at φ near 0.7 (corresponding to a normalized Thiele modulus φ* = 1). For φ < 0.3 or φ > 1.4, the relative error was less than 0.5%. A biofilm containing aerobic ammonium oxidizers was chosen as a test case to illustrate the model's capability. We assumed a continuum heterogeneous biofilm model where the effective diffusivities of oxygen and ammonium change with biofilm position. Calculations were performed for two scenarios; Case I had low dissolved oxygen (DO) concentrations and Case II had high DO concentrations, with a concentration at the biofilm-fluid interface of 10 g O2 /m(3) . For Case II, ammonium was the limiting substrate for a biofilm surface concentration, CNs , ≤13.84 g of N/m(3) . At these concentrations ammonium was limiting inside the biofilm, and oxygen was fully penetrating. Conversely, for CNs > 13.84 g of N/m(3) , oxygen became the limiting substrate inside the biofilm and ammonium was fully penetrating. Finally, a generalized procedure to estimate the effectiveness factor for a system with multiple (n > 2) limiting substrates is given.


Asunto(s)
Bacterias Aerobias/efectos de los fármacos , Bacterias Aerobias/fisiología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Compuestos de Amonio/metabolismo , Bacterias Aerobias/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo
14.
Sci Total Environ ; 433: 98-109, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22771467

RESUMEN

Water is one of the main sources of human exposure to microbiological hazards. Although legislation establishes regulatory standards in terms of fecal indicator bacteria to assess the microbiological quality of water, these do not necessarily predict the presence of pathogens such as parasites and viruses. Better surveillance and management strategies are needed to assess the risk of pathogens' waterborne transmission. We established a baseline dataset to characterize river water quality, identify changes over time, and design a rational monitoring strategy. Data from a year-long monthly monitoring campaign of the polluted Arenales River (Argentina), were analyzed to statistically correlate physicochemical and microbiological variables, the seasonal and longitudinal variations of the water quality and determine the similarity between study sites. The measured variables (sixteen) reflected the deterioration in the river quality through the city. Different viruses and parasites found did not correlate with the concentration of total and thermotolerant coliforms. There was significant seasonal variation for temperature, turbidity, conductivity, dissolved oxygen, enterococci, and norovirus. Strong correlations between some variables were found; we selected eight variables (dissolved oxygen, conductivity, turbidity, total and thermotolerant coliforms, Enterococcus, and adenovirus and Microsporidium as viral and parasitological indicators, respectively) for future monitoring. There was similarity between the monitoring locations, which were grouped into four clusters validated by cophenetic correlation and supported by discriminant analysis. This allowed us to reduce the number of sites, from eleven down to five. Sixty seven percent of the total variance and the correlation structure between variables were explained using five principal components. All these analyses led to a new long-term systematic monitoring scheme. A rational monitoring strategy based on the selection of the most suitable monitoring points and of the most significant variables to measure, will result in optimal use of the limited resources available to adequately protect the public and environmental health.


Asunto(s)
Monitoreo del Ambiente , Microbiología del Agua , Calidad del Agua , Argentina , Secuencia de Bases , Cartilla de ADN , Estudios Longitudinales , Recuento de Huevos de Parásitos , Reacción en Cadena en Tiempo Real de la Polimerasa , Estaciones del Año
15.
J Environ Monit ; 14(9): 2338-49, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22790278

RESUMEN

Many developing and threshold countries rely on shallow groundwater wells for their water supply whilst pit latrines are used for sanitation. We employed a unified strategy involving satellite images and environmental monitoring of 16 physico-chemical and microbiological water quality parameters to identify significant land uses that can lead to unacceptable deterioration of source water, in a region with a subtropical climate and seasonally restricted torrential rainfall in Northern Argentina. Agricultural and non-agricultural sources of nitrate were illustrated in satellite images and used to assess the organic load discharged. The estimated human organic load per year was 28.5 BOD(5) tons and the N load was 7.5 tons, while for poultry farms it was 9940-BOD(5) tons and 1037-N tons, respectively. Concentrations of nitrates and organics were significantly different between seasons in well water (p values of 0.026 and 0.039, respectively). The onset of the wet season had an extraordinarily negative impact on well water due in part to the high permeability of soils made up of fine gravels and coarse sand. Discriminant analysis showed that land uses had a pronounced seasonal influence on nitrates and introduced additional microbial contamination, causing nitrification and denitrification in shallow groundwater. P-well was highly impacted by a poultry farm while S-well was affected by anthropogenic pollution and background load, as revealed by Principal Component Analysis. The application of microbial source tracking techniques is recommended to corroborate local sources of human versus animal origin.


Asunto(s)
Agua Potable/química , Monitoreo del Ambiente/métodos , Agua Subterránea/química , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/estadística & datos numéricos , Abastecimiento de Agua/estadística & datos numéricos , Argentina , Agua Potable/microbiología , Agua Subterránea/microbiología , Humanos , Microbiología del Agua
16.
Biotechnol Bioeng ; 109(7): 1779-90, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22252922

RESUMEN

We present a novel analytical approach to describe biofilm processes considering continuum variation of both biofilm density and substrate effective diffusivity. A simple perturbation and matching technique was used to quantify biofilm activity using the steady-state diffusion-reaction equation with continuum variable substrate effective diffusivity and biofilm density, along the coordinate normal to the biofilm surface. The procedure allows prediction of an effectiveness factor, η, defined as the ratio between the observed rate of substrate utilization (reaction rate with diffusion resistance) and the rate of substrate utilization without diffusion limitation. Main assumptions are that (i) the biofilm is a continuum, (ii) substrate is transferred by diffusion only and is consumed only by microorganisms at a rate according to Monod kinetics, (iii) biofilm density and substrate effective diffusivity change in the x direction, (iv) the substrate concentration above the biofilm surface is known, and (v) the substratum is impermeable. With this approach one can evaluate, in a fast and efficient way, the effect of different parameters that characterize a heterogeneous biofilm and the kinetics of the rate of substrate consumption on the behavior of the biological system. Based on a comparison of η profiles the activity of a homogeneous biofilm could be as much as 47.8% higher than that of a heterogeneous biofilm, under the given conditions. A comparison of η values estimated for first order kinetics and η values obtained by numerical techniques showed a maximum deviation of 1.75% in a narrow range of modified Thiele modulus values. When external mass transfer resistance, is also considered, a global effectiveness factor, η(0) , can be calculated. The main advantage of the approach lies in the analytical expression for the calculation of the intrinsic effectiveness factor η and its implementation in a computer program. For the test cases studied convergence was achieved quickly after four or five iterations. Therefore, the simulation and scale-up of heterogeneous biofilm reactors can be easily carried out.


Asunto(s)
Biopelículas , Modelos Biológicos , Biopelículas/crecimiento & desarrollo , Reactores Biológicos/microbiología , Simulación por Computador , Difusión , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA