Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
2.
Nat Cell Biol ; 26(8): 1359-1372, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39095657

RESUMEN

Circular RNA (circRNA) is covalently closed, single-stranded RNA produced by back-splicing. A few circRNAs have been implicated as functional; however, we lack understanding of pathways that are regulated by circRNAs. Here we generated a pooled short-hairpin RNA library targeting the back-splice junction of 3,354 human circRNAs that are expressed at different levels (ranging from low to high) in humans. We used this library for loss-of-function proliferation screens in a panel of 18 cancer cell lines from four tissue types harbouring mutations leading to constitutive activity of defined pathways. Both context-specific and non-specific circRNAs were identified. Some circRNAs were found to directly regulate their precursor, whereas some have a function unrelated to their precursor. We validated these observations with a secondary screen and uncovered a role for circRERE(4-10) and circHUWE1(22,23), two cell-essential circRNAs, circSMAD2(2-6), a WNT pathway regulator, and circMTO1(2,RI,3), a regulator of MAPK signalling. Our work sheds light on pathways regulated by circRNAs and provides a catalogue of circRNAs with a measurable function.


Asunto(s)
Proliferación Celular , ARN Circular , ARN Circular/genética , ARN Circular/metabolismo , Humanos , Proliferación Celular/genética , Línea Celular Tumoral , Vía de Señalización Wnt/genética , Transducción de Señal , ARN/genética , ARN/metabolismo , Empalme del ARN , Regulación Neoplásica de la Expresión Génica , Biblioteca de Genes
3.
Semin Cancer Biol ; 102-103: 4-16, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38917876

RESUMEN

Epithelial-mesenchymal transition (EMT) is a major contributor to metastatic progression and is prominently regulated by TGF-ß signalling. Both EMT and TGF-ß pathway components are tightly controlled by non-coding RNAs - including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) - that collectively have major impacts on gene expression and resulting cellular states. While miRNAs are the best characterised regulators of EMT and TGF-ß signaling and the miR-200-ZEB1/2 feedback loop plays a central role, important functions for lncRNAs and circRNAs are also now emerging. This review will summarise our current understanding of the roles of non-coding RNAs in EMT and TGF-ß signaling with a focus on their functions in cancer progression.


Asunto(s)
Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , MicroARNs , Neoplasias , Transducción de Señal , Factor de Crecimiento Transformador beta , Transición Epitelial-Mesenquimal/genética , Humanos , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/genética , Animales , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Circular/genética
5.
Nature ; 627(8002): 212-220, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38355801

RESUMEN

Circular RNAs (circRNAs), which are increasingly being implicated in a variety of functions in normal and cancerous cells1-5, are formed by back-splicing of precursor mRNAs in the nucleus6-10. circRNAs are predominantly localized in the cytoplasm, indicating that they must be exported from the nucleus. Here we identify a pathway that is specific for the nuclear export of circular RNA. This pathway requires Ran-GTP, exportin-2 and IGF2BP1. Enhancing the nuclear Ran-GTP gradient by depletion or chemical inhibition of the major protein exporter CRM1 selectively increases the nuclear export of circRNAs, while reducing the nuclear Ran-GTP gradient selectively blocks circRNA export. Depletion or knockout of exportin-2 specifically inhibits nuclear export of circRNA. Analysis of nuclear circRNA-binding proteins reveals that interaction between IGF2BP1 and circRNA is enhanced by Ran-GTP. The formation of circRNA export complexes in the nucleus is promoted by Ran-GTP through its interactions with exportin-2, circRNA and IGF2BP1. Our findings demonstrate that adaptors such as IGF2BP1 that bind directly to circular RNAs recruit Ran-GTP and exportin-2 to export circRNAs in a mechanism that is analogous to protein export, rather than mRNA export.


Asunto(s)
Transporte Activo de Núcleo Celular , Núcleo Celular , Transporte de ARN , ARN Circular , Transporte Activo de Núcleo Celular/fisiología , Núcleo Celular/metabolismo , Guanosina Trifosfato/metabolismo , Carioferinas/antagonistas & inhibidores , Carioferinas/deficiencia , Carioferinas/genética , Carioferinas/metabolismo , Proteínas Nucleares/metabolismo , Proteína de Unión al GTP ran/metabolismo , ARN Circular/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteína Exportina 1/metabolismo , Transporte de Proteínas
6.
Nucleic Acids Res ; 52(3): 1387-1403, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38015468

RESUMEN

While the majority of circRNAs are formed from infrequent back-splicing of exons from protein coding genes, some can be produced at quite high level and in a regulated manner. We describe the regulation, biogenesis and function of circDOCK1(2-27), a large, abundant circular RNA that is highly regulated during epithelial-mesenchymal transition (EMT) and whose formation depends on the epithelial splicing regulator ESRP1. CircDOCK1(2-27) synthesis in epithelial cells represses cell motility both by diverting transcripts from DOCK1 mRNA production to circRNA formation and by direct inhibition of migration by the circRNA. HITS-CLIP analysis and CRISPR-mediated deletions indicate ESRP1 controls circDOCK1(2-27) biosynthesis by binding a GGU-containing repeat region in intron 1 and detaining its splicing until Pol II completes its 157 kb journey to exon 27. Proximity-dependent biotinylation (BioID) assay suggests ESRP1 may modify the RNP landscape of intron 1 in a way that disfavours communication of exon 1 with exon 2, rather than physically bridging exon 2 to exon 27. The X-ray crystal structure of RNA-bound ESRP1 qRRM2 domain reveals it binds to GGU motifs, with the guanines embedded in clamp-like aromatic pockets in the protein.


Asunto(s)
Empalme Alternativo , ARN Circular , Proteínas de Unión al ARN , Proteínas de Unión al GTP rac , ARN/genética , ARN/metabolismo , Empalme del ARN , ARN Circular/genética , Humanos , Línea Celular Tumoral , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP rac/metabolismo
7.
Mol Biol Cell ; 35(2): ar17, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38019605

RESUMEN

The RNA-binding protein Quaking (QKI) has widespread effects on mRNA regulation including alternative splicing, stability, translation, and localization of target mRNAs. Recently, QKI was found to be induced during epithelial-mesenchymal transition (EMT), where it promotes a mesenchymal alternative splicing signature that contributes to the mesenchymal phenotype. QKI is itself alternatively spliced to produce three major isoforms, QKI-5, QKI-6, and QKI-7. While QKI-5 is primarily localized to the nucleus where it controls mesenchymal splicing during EMT, the functions of the two predominantly cytoplasmic isoforms, QKI-6 and QKI-7, in this context remain uncharacterized. Here we used CRISPR-mediated depletion of QKI in a human mammary epithelial cell model of EMT and studied the effects of expressing the QKI isoforms in isolation and in combination. QKI-5 was required to induce mesenchymal morphology, while combined expression of QKI-5 with either QKI-6 or QKI-7 further enhanced mesenchymal morphology and cell migration. In addition, we found that QKI-6 and QKI-7 can partially localize to the nucleus and contribute to alternative splicing of QKI target genes. These findings indicate that the QKI isoforms function in a dynamic and cooperative manner to promote the mesenchymal phenotype.


Asunto(s)
Empalme Alternativo , Empalme del ARN , Humanos , Isoformas de Proteínas/metabolismo , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo
8.
RNA Biol ; 21(1): 1-11, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38112323

RESUMEN

Epithelial-mesenchymal transition (EMT) plays important roles in tumour progression and is orchestrated by dynamic changes in gene expression. While it is well established that post-transcriptional regulation plays a significant role in EMT, the extent of alternative polyadenylation (APA) during EMT has not yet been explored. Using 3' end anchored RNA sequencing, we mapped the alternative polyadenylation (APA) landscape following Transforming Growth Factor (TGF)-ß-mediated induction of EMT in human mammary epithelial cells and found APA generally causes 3'UTR lengthening during this cell state transition. Investigation of potential mediators of APA indicated the RNA-binding protein Quaking (QKI), a splicing factor induced during EMT, regulates a subset of events including the length of its own transcript. Analysis of QKI crosslinked immunoprecipitation (CLIP)-sequencing data identified the binding of QKI within 3' untranslated regions (UTRs) was enriched near cleavage and polyadenylation sites. Following QKI knockdown, APA of many transcripts is altered to produce predominantly shorter 3'UTRs associated with reduced gene expression. These findings reveal the changes in APA that occur during EMT and identify a potential role for QKI in this process.


Asunto(s)
Regulación de la Expresión Génica , Poliadenilación , Humanos , Transición Epitelial-Mesenquimal/genética , Secuencia de Bases , Proteínas de Unión al ARN/genética , Regiones no Traducidas 3'
9.
Life Sci Alliance ; 6(10)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37536977

RESUMEN

Epithelial-mesenchymal transition is essential for tissue patterning and organization. It involves both regulation of cell motility and alterations in the composition and organization of the ECM-a complex environment of proteoglycans and fibrous proteins essential for tissue homeostasis, signaling in response to chemical and biomechanical stimuli, and is often dysregulated under conditions such as cancer, fibrosis, and chronic wounds. Here, we demonstrate that basonuclin-2 (BNC2), a mesenchymal-expressed gene, that is, strongly associated with cancer and developmental defects across genome-wide association studies, is a novel regulator of ECM composition and degradation. We find that at endogenous levels, BNC2 controls the expression of specific collagens, matrix metalloproteases, and other matrisomal components in breast cancer cells, and in fibroblasts that are primarily responsible for the production and processing of the ECM within the tumour microenvironment. In so doing, BNC2 modulates the motile and invasive properties of cancers, which likely explains the association of high BNC2 expression with increasing cancer grade and poor patient prognosis.


Asunto(s)
Proteínas de Unión al ADN , Estudio de Asociación del Genoma Completo , Neoplasias , Humanos , Colágeno/metabolismo , Transición Epitelial-Mesenquimal/genética , Matriz Extracelular/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral/genética , Proteínas de Unión al ADN/metabolismo
10.
Nucleic Acids Res ; 51(18): 9938-9951, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37522357

RESUMEN

MiRNAs post-transcriptionally repress gene expression by binding to mRNA 3'UTRs, but the extent to which they act through protein coding regions (CDS regions) is less well established. MiRNA interaction studies show a substantial proportion of binding occurs in CDS regions, however sequencing studies show much weaker effects on mRNA levels than from 3'UTR interactions, presumably due to competition from the translating ribosome. Consequently, most target prediction algorithms consider only 3'UTR interactions. However, the consequences of CDS interactions may have been underestimated, with the reporting of a novel mode of miRNA-CDS interaction requiring base pairing of the miRNA 3' end, but not the canonical seed site, leading to repression of translation with little effect on mRNA turnover. Using extensive reporter, western blotting and bioinformatic analyses, we confirm that miRNAs can indeed suppress genes through CDS-interaction in special circumstances. However, in contrast to that previously reported, we find repression requires extensive base-pairing, including of the canonical seed, but does not strictly require base pairing of the 3' miRNA terminus and is mediated through reducing mRNA levels. We conclude that suppression of endogenous genes can occur through miRNAs binding to CDS, but the requirement for extensive base-pairing likely limits the regulatory impacts to modest effects on a small subset of targets.

11.
Cancer Cell ; 41(7): 1309-1326.e10, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37295428

RESUMEN

The first step of oncogenesis is the acquisition of a repertoire of genetic mutations to initiate and sustain the malignancy. An important example of this initiation phase in acute leukemias is the formation of a potent oncogene by chromosomal translocations between the mixed lineage leukemia (MLL) gene and one of 100 translocation partners, known as the MLL recombinome. Here, we show that circular RNAs (circRNAs)-a family of covalently closed, alternatively spliced RNA molecules-are enriched within the MLL recombinome and can bind DNA, forming circRNA:DNA hybrids (circR loops) at their cognate loci. These circR loops promote transcriptional pausing, proteasome inhibition, chromatin re-organization, and DNA breakage. Importantly, overexpressing circRNAs in mouse leukemia xenograft models results in co-localization of genomic loci, de novo generation of clinically relevant chromosomal translocations mimicking the MLL recombinome, and hastening of disease onset. Our findings provide fundamental insight into the acquisition of chromosomal translocations by endogenous RNA carcinogens in leukemia.


Asunto(s)
Leucemia , Translocación Genética , Animales , Ratones , Humanos , ARN Circular/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Leucemia/genética , Leucemia/patología , ADN , Proteínas de Fusión Oncogénica/genética
12.
Cancer Discov ; 13(8): 1922-1947, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37191437

RESUMEN

Leukemia stem cells (LSC) possess distinct self-renewal and arrested differentiation properties that are responsible for disease emergence, therapy failure, and recurrence in acute myeloid leukemia (AML). Despite AML displaying extensive biological and clinical heterogeneity, LSC with high interleukin-3 receptor (IL3R) levels are a constant yet puzzling feature, as this receptor lacks tyrosine kinase activity. Here, we show that the heterodimeric IL3Rα/ßc receptor assembles into hexamers and dodecamers through a unique interface in the 3D structure, where high IL3Rα/ßc ratios bias hexamer formation. Importantly, receptor stoichiometry is clinically relevant as it varies across the individual cells in the AML hierarchy, in which high IL3Rα/ßc ratios in LSCs drive hexamer-mediated stemness programs and poor patient survival, while low ratios mediate differentiation. Our study establishes a new paradigm in which alternative cytokine receptor stoichiometries differentially regulate cell fate, a signaling mechanism that may be generalizable to other transformed cellular hierarchies and of potential therapeutic significance. SIGNIFICANCE: Stemness is a hallmark of many cancers and is largely responsible for disease emergence, progression, and relapse. Our finding that clinically significant stemness programs in AML are directly regulated by different stoichiometries of cytokine receptors represents a hitherto unexplained mechanism underlying cell-fate decisions in cancer stem cell hierarchies. This article is highlighted in the In This Issue feature, p. 1749.


Asunto(s)
Leucemia Mieloide Aguda , Receptores de Citocinas , Humanos , Receptores de Citocinas/uso terapéutico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Fosforilación , Transducción de Señal , Proliferación Celular , Células Madre Neoplásicas
13.
Blood ; 139(26): 3737-3751, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35443029

RESUMEN

Inducing cell death by the sphingolipid ceramide is a potential anticancer strategy, but the underlying mechanisms remain poorly defined. In this study, triggering an accumulation of ceramide in acute myeloid leukemia (AML) cells by inhibition of sphingosine kinase induced an apoptotic integrated stress response (ISR) through protein kinase R-mediated activation of the master transcription factor ATF4. This effect led to transcription of the BH3-only protein Noxa and degradation of the prosurvival Mcl-1 protein on which AML cells are highly dependent for survival. Targeting this novel ISR pathway, in combination with the Bcl-2 inhibitor venetoclax, synergistically killed primary AML blasts, including those with venetoclax-resistant mutations, as well as immunophenotypic leukemic stem cells, and reduced leukemic engraftment in patient-derived AML xenografts. Collectively, these findings provide mechanistic insight into the anticancer effects of ceramide and preclinical evidence for new approaches to augment Bcl-2 inhibition in the therapy of AML and other cancers with high Mcl-1 dependency.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Antineoplásicos/uso terapéutico , Apoptosis , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Línea Celular Tumoral , Ceramidas/farmacología , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
14.
Wiley Interdiscip Rev RNA ; 13(6): e1724, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35298877

RESUMEN

The RNA-binding protein Quaking (QKI) has emerged as a potent regulator of cellular differentiation in developmental and pathological processes. The QKI gene is itself alternatively spliced to produce three major isoforms, QKI-5, QKI-6, and QKI-7, that possess very distinct functions. Here, we highlight roles of the different QKI isoforms in neuronal, vascular, muscle, and monocyte cell differentiation, and during epithelial-mesenchymal transition in cancer progression. QKI isoforms control cell differentiation through regulating alternative splicing, mRNA stability and translation, with activities in gene transcription now also becoming evident. These diverse functions of the QKI isoforms contribute to their broad influences on RNA metabolism and cellular differentiation. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Development.


Asunto(s)
Empalme Alternativo , Proteínas de Unión al ARN , Proteínas de Unión al ARN/metabolismo , Isoformas de Proteínas , Diferenciación Celular/genética , ARN/metabolismo
16.
Cancers (Basel) ; 13(21)2021 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-34771489

RESUMEN

Circular RNAs are regulatory molecules involved in numerous cellular processes and may be involved in tumour growth and diffusion. Here, we define the expression of 15 selected circular RNAs, which may control the process of epithelial-to-mesenchymal transition, using a panel of 18 breast cancer cell lines recapitulating the heterogeneity of these tumours and consisting of three groups according to the mesenchymal/epithelial phenotype. A circular RNA from the DOCK1 gene (hsa_circ_0020397) shows low/undetectable levels in triple-negative mesenchymal cell lines, while its content is high in epithelial cell lines, independent of estrogen receptor or HER2 positivity. RNA-sequencing experiments performed on the triple-negative/mesenchymal MDA-MB-231 and MDA-MB-157 cell lines engineered to overexpress hsa_circ_0020397 demonstrate that the circRNA influences the expression of 110 common genes. Pathway analysis of these genes indicates that overexpression of the circular RNA differentiates the two mesenchymal cell lines along the epithelial pathway and increases cell-to-cell adhesion. This is accompanied by growth inhibition and a reduction in the random/directional motility of the cell lines. The upregulated AGR2, ENPP1, and PPP1R9A genes as well as the downregulated APOE, AQP3, CD99L2, and IGFBP4 genes show an opposite regulation by hsa_circ_0020397 silencing in luminal CAMA1 cells. The results provide novel insights into the role played by specific circular RNAs in the generation/progression of breast cancer.

18.
Nucleic Acids Res ; 49(18): e105, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34255842

RESUMEN

Translation of eukaryotic mRNAs begins with binding of their m7G cap to eIF4E, followed by recruitment of other translation initiation factor proteins. We describe capCLIP, a novel method to comprehensively capture and quantify the eIF4E (eukaryotic initiation factor 4E) 'cap-ome' and apply it to examine the biological consequences of eIF4E-cap binding in distinct cellular contexts. First, we use capCLIP to identify the eIF4E cap-omes in human cells with/without the mTORC1 (mechanistic target of rapamycin, complex 1) inhibitor rapamycin, there being an emerging consensus that rapamycin inhibits translation of TOP (terminal oligopyrimidine) mRNAs by displacing eIF4E from their caps. capCLIP reveals that the representation of TOP mRNAs in the cap-ome is indeed systematically reduced by rapamycin, thus validating our new methodology. capCLIP also refines the requirements for a functional TOP sequence. Second, we apply capCLIP to probe the consequences of phosphorylation of eIF4E. We show eIF4E phosphorylation reduces overall eIF4E-mRNA association and, strikingly, causes preferential dissociation of mRNAs with short 5'-UTRs. capCLIP is a valuable new tool to probe the function of eIF4E and of other cap-binding proteins such as eIF4E2/eIF4E3.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Caperuzas de ARN/metabolismo , ARN Mensajero/metabolismo , Células HeLa , Humanos , Unión Proteica , Biosíntesis de Proteínas
19.
Bioinformatics ; 37(19): 3285-3292, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-33904576

RESUMEN

MOTIVATION: Unravelling cancer driver genes is important in cancer research. Although computational methods have been developed to identify cancer drivers, most of them detect cancer drivers at population level. However, two patients who have the same cancer type and receive the same treatment may have different outcomes because each patient has a different genome and their disease might be driven by different driver genes. Therefore new methods are being developed for discovering cancer drivers at individual level, but existing personalized methods only focus on coding drivers while microRNAs (miRNAs) have been shown to drive cancer progression as well. Thus, novel methods are required to discover both coding and miRNA cancer drivers at individual level. RESULTS: We propose the novel method, pDriver, to discover personalized cancer drivers. pDriver includes two stages: (i) constructing gene networks for each cancer patient and (ii) discovering cancer drivers for each patient based on the constructed gene networks. To demonstrate the effectiveness of pDriver, we have applied it to five TCGA cancer datasets and compared it with the state-of-the-art methods. The result indicates that pDriver is more effective than other methods. Furthermore, pDriver can also detect miRNA cancer drivers and most of them have been confirmed to be associated with cancer by literature. We further analyze the predicted personalized drivers for breast cancer patients and the result shows that they are significantly enriched in many GO processes and KEGG pathways involved in breast cancer. AVAILABILITY AND IMPLEMENTATION: pDriver is available at https://github.com/pvvhoang/pDriver. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

20.
Cell Rep ; 34(1): 108585, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33406413

RESUMEN

Potent therapeutic inhibition of the androgen receptor (AR) in prostate adenocarcinoma can lead to the emergence of neuroendocrine prostate cancer (NEPC), a phenomenon associated with enhanced cell plasticity. Here, we show that microRNA-194 (miR-194) is a regulator of epithelial-neuroendocrine transdifferentiation. In clinical prostate cancer samples, miR-194 expression and activity were elevated in NEPC and inversely correlated with AR signaling. miR-194 facilitated the emergence of neuroendocrine features in prostate cancer cells, a process mediated by its ability to directly target a suite of genes involved in cell plasticity. One such target was FOXA1, which encodes a transcription factor with a vital role in maintaining the prostate epithelial lineage. Importantly, a miR-194 inhibitor blocked epithelial-neuroendocrine transdifferentiation and inhibited the growth of cell lines and patient-derived organoids possessing neuroendocrine features. Overall, our study reveals a post-transcriptional mechanism regulating the plasticity of prostate cancer cells and provides a rationale for targeting miR-194 in NEPC.


Asunto(s)
Transdiferenciación Celular , Factor Nuclear 3-alfa del Hepatocito/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animales , Carcinoma Neuroendocrino/genética , Carcinoma Neuroendocrino/metabolismo , Técnicas de Cultivo de Célula/métodos , Línea Celular Tumoral , Linaje de la Célula , Regulación Neoplásica de la Expresión Génica , Humanos , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Células PC-3 , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA