Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cancers (Basel) ; 15(24)2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38136325

RESUMEN

Melanoma is responsible for the majority of skin cancer-related fatalities. Immune checkpoint inhibitor (ICI) treatments have revolutionized the management of the disease by significantly increasing patient survival rates. However, a considerable number of tumors treated with these drugs fail to respond or may develop resistance over time. Tumor growth and its response to therapies are critically influenced by the tumor microenvironment (TME); it directly supports cancer cell growth and influences the behavior of surrounding immune cells, which can become tumor-permissive, thereby rendering immunotherapies ineffective. Ex vivo modeling of melanomas and their response to treatment could significantly advance our understanding and predictions of therapy outcomes. Efforts have been directed toward developing reliable models that accurately mimic melanoma in its appropriate tissue environment, including tumor organoids, bioprinted tissue constructs, and microfluidic devices. However, incorporating and modeling the melanoma TME and immune component remains a significant challenge. Here, we review recent literature regarding the generation of in vitro 3D models of normal skin and melanoma and the approaches used to incorporate the immune compartment in such models. We discuss how these constructs could be combined and used to test immunotherapies and elucidate treatment resistance mechanisms. The development of 3D in vitro melanoma models that faithfully replicate the complexity of the TME and its interaction with the immune system will provide us with the technical tools to better understand ICI resistance and increase its efficacy, thereby improving personalized melanoma therapy.

2.
Sci Transl Med ; 15(716): eadf7547, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37792956

RESUMEN

Bioprinting is a promising alternative method to generate skin substitutes because it can replicate the structural organization of the skin into biomimetic layers in vitro. In this study, six primary human skin cell types were used to bioprint a trilayer skin construct consisting of epidermis, dermis, and hypodermis. Transplantation of the bioprinted skin with human cells onto full-thickness wounds of nu/nu mice promoted rapid vascularization and formation of epidermal rete ridges analogous to the native human epidermis, with a normal-looking extracellular matrix. Cell-specific staining confirmed the integration of the implanted cells into the regenerated skin. Using a similar approach, a 5 centimeter-by-5 centimeter bioprinted autologous porcine skin graft was transplanted onto full-thickness wounds in a porcine excisional wound model. The bioprinted skin graft improved epithelialization, reduced skin contraction, and supported normal collagen organization with reduced fibrosis. Differential gene expression demonstrated pro-remodeling protease activity in wounds transplanted with bioprinted autologous skin grafts. These results demonstrate that bioprinted skin can support skin regeneration to allow for nonfibrotic wound healing and suggest that the skin bioprinting technology may be applicable for human clinical use.


Asunto(s)
Piel , Cicatrización de Heridas , Ratones , Humanos , Porcinos , Animales , Epidermis , Regeneración , Repitelización , Trasplante de Piel
3.
Proteomics ; 22(3): e2000304, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34674377

RESUMEN

Myocyte differentiation is featured by adaptation processes, including mitochondria repopulation and cytoskeleton re-organization. The difference between monolayer and spheroid cultured cells at the proteomic level is uncertain. We cultivated alveolar mucosa multipotent mesenchymal stromal cells in spheroids in a myogenic way for the proper conditioning of ECM architecture and cell morphology, which induced spontaneous myogenic differentiation of cells within spheroids. Electron microscopy analysis was used for the morphometry of mitochondria biogenesis, and proteomic was used complementary to unveil events underlying differences between two-dimensional/three-dimensional myoblasts differentiation. The prevalence of elongated mitochondria with an average area of 0.097 µm2 was attributed to monolayer cells 7 days after the passage. The population of small mitochondria with a round shape and area of 0.049 µm2 (p < 0.05) was observed in spheroid cells cultured under three-dimensional conditions. Cells in spheroids were quantitatively enriched in proteins of mitochondria biogenesis (DNM1L, IDH2, SSBP1), respiratory chain (ACO2, ATP5I, COX5A), extracellular proteins (COL12A1, COL6A1, COL6A2), and cytoskeleton (MYL6, MYL12B, MYH10). Most of the Rab-related transducers were inhibited in spheroid culture. The proteomic assay demonstrated delicate mechanisms of mitochondria autophagy and repopulation, cytoskeleton assembling, and biogenesis. Differences in the ultrastructure of mitochondria indicate active biogenesis under three-dimensional conditions.


Asunto(s)
Células Madre Mesenquimatosas , Proteómica , Diferenciación Celular , Células Cultivadas , Microscopía Electrónica , Membrana Mucosa , Esferoides Celulares
4.
Biomed Res Int ; 2021: 8463161, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34337053

RESUMEN

Meso-Xanthin (Meso-Xanthin F199™) is a highly active antiaging injection drug of the latest generation. The main acting compound is fucoxanthin, supplemented with several growth factors, vitamins, and hyaluronic acid. Previous examination of fucoxanthin on melanocytes showed its ability to inhibit skin pigmentation through different signaling pathways focused on suppression of melanogenic-stimulating receptors. In turn, the anticancer property of fucoxanthin is realized through MAPK and PI3K pathways. We aimed to evaluate the effect of fucoxanthin and supplemented growth factors on melanocyte growth and transformation at a proteomic level. The effect of fucoxanthin on melanocytes cultivated in three-dimensional (3D) condition was examined using high-throughput proteomic and system biology approaches to disclose key molecular events of the targeted action. Our results demonstrated significant inhibition of cell differentiation and ubiquitination processes. We found that the negative regulation of PSME1 and PTGIS largely determines the inhibition of NF-κB and MAPK2. Besides, fucoxanthin selectively inhibits cell differentiation via negative regulation of Raf signaling and the upstream activation of IL-1 signaling. It is assumed that inhibition of Raf influences the Notch-4 signaling and switches off the MAPK/MAPK2 cascade. Blockage of MAPK/MAPK2 is feasible due to suppression of Ras and NF-κB by the addressed action of IKKB, IKK2, and TRAF6. Suggestively, Meso-Xanthin F199™ can manage processes of proliferative activity and inhibition of apoptosis due to composition of fucoxanthin and growth-stimulating factors, which may increase the risk of skin cancer development under certain condition.


Asunto(s)
Apoptosis/efectos de los fármacos , Técnicas de Cultivo de Célula , Sistema de Señalización de MAP Quinasas , Melanocitos/citología , Melanocitos/metabolismo , Receptores Notch/metabolismo , Xantina/farmacología , Proliferación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melanocitos/efectos de los fármacos , Mapas de Interacción de Proteínas/efectos de los fármacos , Proteoma/metabolismo
6.
Front Cell Dev Biol ; 9: 572727, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33898413

RESUMEN

Bone formation during embryogenesis is driven by interacting osteogenesis and angiogenesis with parallel endothelial differentiation. Thence, all in vitro bioengineering techniques are aimed at pre-vascularization of osteogenic bioequivalents to provide better regeneration outcomes upon transplantation. Due to appearance of cell-cell and cell-matrix interactions, 3D cultures of adipose-derived stromal cells (ADSCs) provide a favorable spatial context for the induction of different morphogenesis processes, including vasculo-, angio-, and osteogenesis and, therefore, allow modeling their communication in vitro. However, simultaneous induction of multidirectional cell differentiation in spheroids from multipotent mesenchymal stromal cells (MMSCs) was not considered earlier. Here we show that arranging ADSCs into spheroids allows rapid and spontaneous acquiring of markers of both osteo- and angiogenesis compared with 2D culture. We further showed that this multidirectional differentiation persists in time, but is not influenced by classical protocols for osteo- or angio-differentiation. At the same time, ADSC-spheroids retain similar morphology and microarchitecture in different culture conditions. These findings can contribute to a better understanding of the fundamental aspects of autonomous regulation of differentiation processes and their cross-talks in artificially created self-organizing multicellular structures. This, in turn, can find a wide range of applications in the field of tissue engineering and regeneration.

7.
Sci Rep ; 10(1): 12614, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32724115

RESUMEN

Biological self-assembly is crucial in the processes of development, tissue regeneration, and maturation of bioprinted tissue-engineered constructions. The cell aggregates-spheroids-have become widely used model objects in the study of this phenomenon. Existing approaches describe the fusion of cell aggregates by analogy with the coalescence of liquid droplets and ignore the complex structural properties of spheroids. Here, we analyzed the fusion process in connection with structure and mechanical properties of the spheroids from human somatic cells of different phenotypes: mesenchymal stem cells from the limbal eye stroma and epithelial cells from retinal pigment epithelium. A nanoindentation protocol was applied for the mechanical measurements. We found a discrepancy with the liquid drop fusion model: the fusion was faster for spheroids from epithelial cells with lower apparent surface tension than for mesenchymal spheroids with higher surface tension. This discrepancy might be caused by biophysical processes such as extracellular matrix remodeling in the case of mesenchymal spheroids and different modes of cell migration. The obtained results will contribute to the development of more realistic models for spheroid fusion that would further provide a helpful tool for constructing cell aggregates with required properties both for fundamental studies and tissue reparation.


Asunto(s)
Modelos Biológicos , Esferoides Celulares/citología , Biomarcadores/metabolismo , Fusión Celular , Forma de la Célula , Células Cultivadas , Módulo de Elasticidad , Células Epiteliales/citología , Células Epiteliales/ultraestructura , Humanos , Limbo de la Córnea/citología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/ultraestructura , Epitelio Pigmentado de la Retina/citología
8.
Artículo en Inglés | MEDLINE | ID: mdl-32582665

RESUMEN

Pigmentation is the result of melanin synthesis, which takes place in melanocytes, and its further distribution. A dysregulation in melanocytes' functionality can result in the loss of pigmentation, the appearance of pigment spots and melanoma development. Tissue engineering and the screening of new skin-lightening drugs require the development of simple and reproducible in vitro models with maintained functional activity. The aim of the study was to obtain and characterize spheroids from normal human melanocytes as a three-dimensional multicellular structure and as a test system for skin-lightening drug screening. Melanocytes are known to lose their ability to synthesize melanin in monolayer culture. When transferred under non-adhesive conditions in agarose multi-well plates, melanocytes aggregated and formed spheroids. As a result, the amount of melanin elevated almost two times within seven days. MelanoDerm™ (MatTek) skin equivalents were used as a comparison system. Cells in spheroids expressed transcription factors that regulate melanogenesis: MITF and Sox10, the marker of developed melanosomes-gp100, as well as tyrosinase (TYR)-the melanogenesis enzyme and melanocortin receptor 1 (MC1R)-the main receptor regulating melanin synthesis. Expression was maintained during 3D culturing. Thus, it can be stated that spheroids maintain melanocytes' functional activity compared to that in the multi-layered MelanoDerm™ skin equivalents. Culturing both spheroids and MelanoDerm™ for seven days in the presence of the skin-lightening agent fucoxanthin resulted in a more significant lowering of melanin levels in spheroids. Significant down-regulation of gp100, MITF, and Sox10 transcription factors, as well as 10-fold down-regulation of TYR expression, was observed in spheroids by day 7 in the presence of fucoxanthin, thus inhibiting the maturation of melanosomes and the synthesis of melanin. MelanoDerm™ samples were characterized by significant down-regulation of only MITF, Sox10 indicating that spheroids formed a more sensitive system allowed for quantitative assays. Collectively, these data illustrate that normal melanocytes can assemble themselves into spheroids-the viable structures that are able to accumulate melanin and maintain the initial functional activity of melanocytes. These spheroids can be used as a more affordable and easy-to-use test system than commercial skin equivalents for drug screening.

9.
Tissue Eng Part A ; 26(9-10): 512-526, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31861970

RESUMEN

Over 1 million burn injuries are treated annually in the United States, and current tissue engineered skin fails to meet the need for full-thickness replacement. Bioprinting technology has allowed fabrication of full-thickness skin and has demonstrated the ability to close full-thickness wounds. However, analysis of collagen remodeling in wounds treated with bioprinted skin has not been reported. The purpose of this study is to demonstrate the utility of bioprinted skin for epidermal barrier formation and normal collagen remodeling in full-thickness wounds. Human keratinocytes, melanocytes, fibroblasts, dermal microvascular endothelial cells, follicle dermal papilla cells, and adipocytes were suspended in fibrinogen bioink and bioprinted to form a tri-layer skin structure. Bioprinted skin was implanted onto 2.5 × 2.5 cm full-thickness excisional wounds on athymic mice, compared with wounds treated with hydrogel only or untreated wounds. Total wound closure, epithelialization, and contraction were quantified, and skin samples were harvested at 21 days for histology. Picrosirius red staining was used to quantify collagen fiber orientation, length, and width. Immunohistochemical (IHC) staining was performed to confirm epidermal barrier formation, dermal maturation, vascularity, and human cell integration. All bioprinted skin treated wounds closed by day 21, compared with open control wounds. Wound closure in bioprinted skin treated wounds was primarily due to epithelialization. In contrast, control hydrogel and untreated groups had sparse wound coverage and incomplete closure driven primarily by contraction. Picrosirius red staining confirmed a normal basket weave collagen organization in bioprinted skin-treated wounds compared with parallel collagen fibers in hydrogel only and untreated wounds. IHC staining at day 21 demonstrated the presence of human cells in the regenerated dermis, the formation of a stratified epidermis, dermal maturation, and blood vessel formation in bioprinted skin, none of which was present in control hydrogel treated wounds. Bioprinted skin accelerated full-thickness wound closure by promoting epidermal barrier formation, without increasing contraction. This healing process is associated with human cells from the bioprinted skin laying down a healthy, basket-weave collagen network. The remodeled skin is phenotypically similar to human skin and composed of a composite of graft and infiltrating host cells. Impact statement We have demonstrated the ability of bioprinted skin to enhance closure of full-thickness wounds through epithelialization and normal collagen remodeling. To our knowledge, this article is the first to quantify collagen remodeling by bioprinted skin in full-thickness wounds. Our methods and results can be used to guide further investigation of collagen remodeling by tissue engineered skin products to improve ongoing and future bioprinting skin studies. Ultimately, our skin bioprinting technology could translate into a new treatment for full-thickness wounds in human patients with the ability to recapitulate normal collagen remodeling in full-thickness wounds.


Asunto(s)
Bioimpresión/métodos , Colágeno/química , Piel/citología , Animales , Fibroblastos/citología , Humanos , Queratinocitos/citología , Masculino , Ratones , Ratones Desnudos , Microscopía Electrónica de Rastreo , Ingeniería de Tejidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA