Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Microb Pathog ; 193: 106775, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960216

RESUMEN

Rotavirus, a primary contributor to severe cases of infantile gastroenteritis on a global scale, results in significant morbidity and mortality in the under-five population, particularly in middle to low-income countries, including India. WHO-approved live-attenuated vaccines are linked to a heightened susceptibility to intussusception and exhibit low efficacy, primarily attributed to the high genetic diversity of rotavirus, varying over time and across different geographic regions. Herein, molecular data on Indian rotavirus A (RVA) has been reviewed through phylogenetic analysis, revealing G1P[8] to be the prevalent strain of RVA in India. The conserved capsid protein sequences of VP7, VP4 and VP6 were used to examine helper T lymphocyte, cytotoxic T lymphocyte and linear B-cell epitopes. Twenty epitopes were identified after evaluation of factors such as antigenicity, non-allergenicity, non-toxicity, and stability. These epitopes were then interconnected using suitable linkers and an N-terminal beta defensin adjuvant. The in silico designed vaccine exhibited structural stability and interactions with integrins (αvß3 and αIIbß3) and toll-like receptors (TLR2 and TLR4) indicated by docking and normal mode analyses. The immune simulation profile of the designed RVA multiepitope vaccine exhibited its potential to trigger humoral as well as cell-mediated immunity, indicating that it is a promising immunogen. These computational findings indicate potential efficacy of the designed vaccine against rotavirus infection.

2.
Biophys Chem ; 309: 107218, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38547671

RESUMEN

Nucleic acid aptamers have captivated the attention of analytical and medicinal scientists globally due to their several advantages as recognition molecules over conventional antibodies because of their small size, simple and inexpensive synthesis, broad target range, and high stability in varied environmental conditions. These recognition molecules can be chemically modified to make them resistant to nuclease action in blood serum, reduce rapid renel clearance, improve the target affinity and selectivity, and make them amenable to chemically conjugate with a support system that facilitates their selective applications. This review focuses on the development of efficient aptamer candidates and their application in clinical diagnosis and therapeutic applications. Significant advances have been made in aptamer-based diagnosis of infectious and non-infectious diseases. Collaterally, the progress made in therapeutic applications of aptamers is encouraging, as evident from their use in diagnosing cancer, neurodegenerative diseases, microbial infection, and in imaging. This review also updates the progress on clinical trials of many aptamer-based products of commercial interests. The key development and critical issues on the subject have been summarized in the concluding remarks.


Asunto(s)
Aptámeros de Nucleótidos , Ácidos Nucleicos , Aptámeros de Nucleótidos/química , Técnica SELEX de Producción de Aptámeros/métodos
3.
ACS Meas Sci Au ; 3(6): 404-433, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38145027

RESUMEN

The critical performance factors such as selectivity, sensitivity, operational and storage stability, and response time of electrochemical biosensors are governed mainly by the function of their key component, the bioelectrode. Suitable design and fabrication strategies of the bioelectrode interface are essential for realizing the requisite performance of the biosensors for their practical utility. A multifaceted attempt to achieve this goal is visible from the vast literature exploring effective strategies for preparing, immobilizing, and stabilizing biorecognition elements on the electrode surface and efficient transduction of biochemical signals into electrical ones (i.e., current, voltage, and impedance) through the bioelectrode interface with the aid of advanced materials and techniques. The commercial success of biosensors in modern society is also increasingly influenced by their size (and hence portability), multiplexing capability, and coupling in the interface of the wireless communication technology, which facilitates quick data transfer and linked decision-making processes in real-time in different areas such as healthcare, agriculture, food, and environmental applications. Therefore, fabrication of the bioelectrode involves careful selection and control of several parameters, including biorecognition elements, electrode materials, shape and size of the electrode, detection principles, and various fabrication strategies, including microscale and printing technologies. This review discusses recent trends in bioelectrode designs and fabrications for developing electrochemical biosensors. The discussions have been delineated into the types of biorecognition elements and their immobilization strategies, signal transduction approaches, commonly used advanced materials for electrode fabrication and techniques for fabricating the bioelectrodes, and device integration with modern electronic communication technology for developing electrochemical biosensors of commercial interest.

4.
Biophys Chem ; 303: 107111, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37774437

RESUMEN

Understanding the 3-D structure of nucleic acid aptamers is important for the rational design of aptamer-based constructs in various applications, including for developing aptasensors. Herein, a simple approach for 3D modelling of ssDNA aptamers through an ensemble of web applications has been described. The procedure utilized 30 aptamers whose 3D XRD or NMR experimental structures are available for validation. As a first step, the primary sequences of ssDNA aptamers were transformed into 2D structures using six widely used web applications: RNA fold, Vector builder, RNA Structure, UNA fold, Centroid fold, and IP Knot. The generated 2D structures were then passed through the RNA composer web application to generate 3D RNA structure, which in turn was converted to 3D DNA structures using various Visual Molecular Dynamics web applications that also include conversion of ribose sugar into deoxyribose sugar backbone and uracil to thiamine. The energy-minimized generated 3D structures were matched well with high accuracy to their experimental counterparts. This study identified that the Guanine residues are crucial in the aptamer 3D structure prediction and in algorithms that generate secondary structures. Further, the GC content (<50%), GC bond percentage (<60%), and G:C ratio (<1.12) act as limiting factors in predicting the 2D structures of aptamers. There were variations in the 2D structure predictions by the web applications, even though all these applications were a combination of the MFE, MEA, and McCaskill functions. Processing these structures through the web applications described above produced best-fit 3D structures with the experimental one, thus offering the present ensemble approach to reliably predict the 3D structure of aptamers for various applications.


Asunto(s)
Aptámeros de Nucleótidos , Aptámeros de Nucleótidos/química , Simulación de Dinámica Molecular , ARN/química , Programas Informáticos , Azúcares
5.
Int J Phytoremediation ; 25(13): 1699-1713, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36941761

RESUMEN

The discharge of toxic chemicals into water bodies and their linked detrimental effects on health is a global concern. Phytoremediation, an environment-friendly plant-based technology, has gained intensive interest over the last decades. For the aquatic phytoremediation process, the commonly available duckweeds have recently attracted significant attention due to their capacity to grow in diverse ecological niches, fast growth characteristics, suitable morphology for easy handling of biomass, and capacity to remove and detoxify various potential toxic elements and compounds. This review presents the progress of duckweed-assisted aquatic phytoremediation of toxic chemicals. A brief background of general phytoremediation processes, including the different phytoremediation methods and advances in understanding their underlying mechanisms, has been described. A summary of different approaches commonly practiced to assess the growth of the plants and their metal removal capacity in the phytoremediation process has also been included. A vast majority of studies have established that duckweed is an efficient plant catalyst to accumulate toxic heavy metals and organic contaminants, such as pesticides, fluorides, toxins, and aromatic compounds, reducing their toxicity from water bodies. The potential of this plant-based phytoremediation process for its downstream applications in generating value-added products for the rural economy and industrial interest has been identified.


Duckweed is an aquatic plant widely available in diverse ecosystems on the earth. Due to its fast growth in various environmental conditions, capacity to accumulate and transform different toxic chemicals, and a suitable morphology for handling and processing its biomass easily, duckweed has been projected as an efficient floating plant species for the aquatic phytoremediation technology. Moreover, the duckweed biomass generated from the post phytoremediation process may be transformed into various value-added products to support the rural economy.


Asunto(s)
Araceae , Metales Pesados , Biodegradación Ambiental , Metales , Metales Pesados/toxicidad , Plantas , Agua
6.
ACS Omega ; 8(1): 190-207, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36643547

RESUMEN

Rotavirus gastroenteritis is one of the leading causes of pediatric morbidity and mortality worldwide in infants and under-five populations. The World Health Organization (WHO) recommended global incorporation of the rotavirus vaccine in national immunization programs to alleviate the burden of the disease. Implementation of the rotavirus vaccination in certain regions of the world brought about a significant and consistent reduction of rotavirus-associated hospitalizations. However, the efficacy of licensed vaccines remains suboptimal in low-income countries where the incidences of rotavirus gastroenteritis continue to happen unabated. The problem of low efficacy of currently licensed oral rotavirus vaccines in low-income countries necessitates continuous exploration, design, and development of new rotavirus vaccines. Traditional vaccine development is a complex, expensive, labor-intensive, and time-consuming process. Reverse vaccinology essentially utilizes the genome and proteome information on pathogens and has opened new avenues for in-silico multiepitope vaccine design for a plethora of pathogens, promising time reduction in the complete vaccine development pipeline by complementing the traditional vaccinology approach. A substantial number of reviews on licensed rotavirus vaccines and those under evaluation are already available in the literature. However, a collective account of rotavirus in-silico vaccines is lacking in the literature, and such an account may further fuel the interest of researchers to use reverse vaccinology to expedite the vaccine development process. Therefore, the main focus of this review is to summarize the research endeavors undertaken for the design and development of rotavirus vaccines by the reverse vaccinology approach utilizing the tools of immunoinformatics.

7.
Sci Rep ; 13(1): 1255, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36690637

RESUMEN

Formation of electrogenic microbial biofilm on the electrode is critical for harvesting electrical power from wastewater in microbial biofuel cells (MFCs). Although the knowledge of bacterial community structures in the biofilm is vital for the rational design of MFC electrodes, an in-depth study on the subject is still awaiting. Herein, we attempt to address this issue by creating electrogenic biofilm on modified graphite anodes assembled in an air-cathode MFC. The modification was performed with reduced graphene oxide (rGO), polyaniline (PANI), and carbon nanotube (CNTs) separately. To accelerate the growth of the biofilm, soybean-potato composite (plant) powder was blended with these conductive materials during the fabrication of the anodes. The MFC fabricated with PANI-based anode delivered the current density of 324.2 mA cm-2, followed by CNTs (248.75 mA cm-2), rGO (193 mA cm-2), and blank (without coating) (151 mA cm-2) graphite electrodes. Likewise, the PANI-based anode supported a robust biofilm growth containing maximum bacterial cell densities with diverse shapes and sizes of the cells and broad metabolic functionality. The alpha diversity of the biofilm developed over the anode coated with PANI was the loftiest operational taxonomic unit (2058 OUT) and Shannon index (7.56), as disclosed from the high-throughput 16S rRNA sequence analysis. Further, within these taxonomic units, exoelectrogenic phyla comprising Proteobacteria, Firmicutes, and Bacteroidetes were maximum with their corresponding level (%) 45.5, 36.2, and 9.8. The relative abundance of Gammaproteobacteria, Clostridia, and Bacilli at the class level, while Pseudomonas, Clostridium, Enterococcus, and Bifidobacterium at the genus level were comparatively higher in the PANI-based anode.


Asunto(s)
Fuentes de Energía Bioeléctrica , Grafito , Fuentes de Energía Bioeléctrica/microbiología , Grafito/química , ARN Ribosómico 16S/genética , Biopelículas , Bacterias/genética , Electrodos , Firmicutes/genética
8.
Micromachines (Basel) ; 13(7)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35888900

RESUMEN

The development of robust bioanalytical devices and biosensors for infectious pathogens is progressing well with the advent of new materials, concepts, and technology. The progress is also stepping towards developing high throughput screening technologies that can quickly identify, differentiate, and determine the concentration of harmful pathogens, facilitating the decision-making process for their elimination and therapeutic interventions in large-scale operations. Recently, much effort has been focused on upgrading these analytical devices to an intelligent technological platform by integrating them with modern communication systems, such as the internet of things (IoT) and machine learning (ML), to expand their application horizon. This review outlines the recent development and applications of bioanalytical devices and biosensors to detect pathogenic microbes in environmental samples. First, the nature of the recent outbreaks of pathogenic microbes such as foodborne, waterborne, and airborne pathogens and microbial toxins are discussed to understand the severity of the problems. Next, the discussion focuses on the detection systems chronologically, starting with the conventional methods, advanced techniques, and emerging technologies, such as biosensors and other portable devices and detection platforms for pathogens. Finally, the progress on multiplex assays, wearable devices, and integration of smartphone technologies to facilitate pathogen detection systems for wider applications are highlighted.

9.
ACS Appl Bio Mater ; 5(2): 889-896, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35112851

RESUMEN

Carbon dots (CDs) are emerging as efficient optical probes. However, their application potential for clinical diagnosis has not been adequately explored. Herein, we examined the suitability of pyroglutamate CDs for detecting glucose, cholesterol, and alcohol in blood serum through their peroxidative activity in the respective enzyme-catalyzed reactions following fluorometric and colorimetric approaches. In buffer, the CD's fluorescence intensity (λex 354nm) enhanced over 115% after interaction with the enzyme proteins due to different lifetime components on its surface. The enhancement was also linked to FRET with the proteins (λex 274nm for TRP/TYR). The electrostatic interactions, as revealed from the zeta potential study, generated binding energy (ΔG, kcal/mol) in the range of -5.8 to -6.3 and greatly shifted the protein's secondary structure to ß-strand contents. The CD's fluorescence in the blood serum medium was also enhanced where serum's particulate components contributed to the emission. All these subvert fluorescence emissions could be substantially cleaned for detection of peroxide generated in the enzymatic reaction by filtering the serum particulates and redox proteins prior to the addition of CDs to the reaction systems. The CD, however, could complement well in ABTS-based (absorbance at λmax 414nm) colorimetric reaction in blood serum without introducing protein or particle separation steps for sensitive detection of peroxide. The limit of detection, dynamic range, and sensitivity discerned for peroxide in the glucose oxidase-catalyzed reaction system were 183 µM, 0.02-0.10 mM (R2 = 0.98), and 0.2482 AU mM-1, respectively. Overall, these findings will guide clinical application of the peroxidatic CDs to detect various analytes in blood serum following fluorometric- and colorimetric-based principles.


Asunto(s)
Carbono , Peróxido de Hidrógeno , Carbono/química , Colorimetría , Fluorometría , Glucosa Oxidasa/metabolismo
10.
Environ Res ; 204(Pt D): 112346, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34742708

RESUMEN

Metals represent a large proportion of industrial effluents, which due to their high hazardous nature and toxicity are responsible to create environmental pollution that can pose significant threat to the global flora and fauna. Strict ecological rules compromise sustainable recovery of metals from industrial effluents by replacing unsustainable and energy-consuming physical and chemical techniques. Innovative technologies based on the bioelectrochemical systems (BES) are a rapidly developing research field with proven encouraging outcomes for many industrial commodities, considering the worthy options for recovering metals from industrial effluents. BES technology platform has redox capabilities with small energy-intensive processes. The positive stigma of BES in metals recovery is addressed in this review by demonstrating the significance of BES over the current physical and chemical techniques. The mechanisms of action of BES towards metal recovery have been postulated with the schematic representation. Operational limitations in BES-based metal recovery such as biocathode and metal toxicity are deeply discussed based on the available literature results. Eventually, a progressive inspection towards a BES-based metal recovery platform with possibilities of integration with other modern technologies is foreseen to meet the real-time challenges of viable industrial commercialization.


Asunto(s)
Fuentes de Energía Bioeléctrica , Metales , Reciclaje
11.
World J Microbiol Biotechnol ; 37(2): 36, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33507414

RESUMEN

A variety of pathogenic microorganisms can survive in the drinking water distribution systems (DWDS) by forming stable biofilms and, thus, continually disseminating their population through the system's dynamic water bodies. The ingestion of the pathogen-contaminated water could trigger a broad spectrum of illnesses and well-being-related obstacles. These waterborne diseases are a significant concern for babies, pregnant women, and significantly low-immune individuals. This review highlights the recent advances in understanding the microbiological aspects of drinking water quality, biofilm formation and its dynamics, health issues caused by the emerging microbes in biofilm, and approaches for biofilm investigation its prevention and suppression in DWDS.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Agua Potable/microbiología , Enfermedades Transmitidas por el Agua/microbiología , Humanos , Vigilancia de la Población , Salud Pública , Enfermedades Transmitidas por el Agua/epidemiología , Enfermedades Transmitidas por el Agua/prevención & control
12.
Micromachines (Basel) ; 12(1)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467583

RESUMEN

Carbon dots (CDs) are optically active carbon-based nanomaterials. These nanomaterials can change their light emission properties in response to various external stimuli such as pH, temperature, pressure, and light. The CD's remarkable stimuli-responsive smart material properties have recently stimulated massive research interest for their exploitation to develop various sensor platforms. Herein, an effort has been made to review the major advances made on CDs, focusing mainly on its smart material attributes and linked applications. Since the CD's material properties are largely linked to their synthesis approaches, various synthesis methods, including surface passivation and functionalization of CDs and the mechanisms reported so far in their photophysical properties, are also delineated in this review. Finally, the challenges of using CDs and the scope for their further improvement as an optical signal transducer to expand their application horizon for developing analytical platforms have been discussed.

13.
J Biosci Bioeng ; 129(6): 647-656, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32044271

RESUMEN

Bioelectrochemical systems (BESs) have been intensively investigated over the last decade owing to its wide-scale environmentally friendly applications, among which wastewater treatment, power generation and environmental monitoring for pollutants are prominent. Different variants of BES such as microbial fuel cell, microbial electrolysis cell, microbial desalination cell, enzymatic fuel cell, microbial solar cell, have been studied. These microbial bioelectrocatalytic systems have clear advantages over the existing analytical techniques for sustainable on-site application in wide environmental conditions with minimum human intervention, making the technology irrevocable and economically feasible. The key challenges to establish this technology are to achieve stable and efficient interaction between the electrode surface and microorganisms, reduction of time for start-up and toxic-shock recovery, sensitivity improvement in real-time conditions, device miniaturization and its long-term economically feasible commercial application. This review article summarizes the recent technical progress regarding bio-electrocatalytic processes and the implementation of BESs as a biosensor for determining various compositional characteristics of water and wastewater.


Asunto(s)
Técnicas Biosensibles , Agua/metabolismo , Animales , Fenómenos Bioquímicos , Fuentes de Energía Bioeléctrica , Electrodos , Electrólisis , Humanos , Purificación del Agua
14.
ACS Biomater Sci Eng ; 6(8): 4337-4355, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-33455178

RESUMEN

Enzymes and whole cells serve as the active biological entities in a myriad of applications including bioprocesses, bioanalytics, and bioelectronics. Conserving the natural activity of these functional biological entities during their prolonged use is one of the major goals for validating their practical applications. Silk fibroin (SF) has emerged as a biocompatible material to interface with enzymes as well as whole cells. These biomaterials can be tailored both physically and chemically to create excellent scaffolds of different forms such as fibers, films, and powder for immobilization and stabilization of enzymes. The secondary structures of the SF-protein can be attuned to generate hydrophobic/hydrophilic pockets suitable to create the biocompatible microenvironments. The fibrous nature of the SF protein with a dominant hydrophobic property may also serve as an excellent support for promoting cellular adhesion and growth. This review compiles and discusses the recent literature on the application of SF as a biocompatible material at the interface of enzymes and cells in various fields, including the emerging area of bioelectronics and bioanalytical sciences.


Asunto(s)
Fibroínas , Materiales Biocompatibles , Adhesión Celular , Interacciones Hidrofóbicas e Hidrofílicas , Andamios del Tejido
15.
Anal Chem ; 91(6): 4213-4221, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30793883

RESUMEN

Malaria diagnosis methods offering species-specific information on the causative parasites, along with their flexibility to use in different resource settings, have great demand for precise treatment and management of the disease. Herein, we report the detection of pan malaria and P. falciparum species using a dye-based reaction catalyzed by the biomarker enzymes Plasmodium lactate dehydrogenase ( PLDH) and Plasmodium falciparum glutamate dehydrogenase ( PfGDH), respectively, through instrument-based and instrument-free approaches. For the detection, two ssDNA aptamers specific to the corresponding PLDH and PfGDH were used. The aptamer-captured enzymes were detected through a substrate-dependent reaction coupled with the conversion of resazurin (blue, ∼λ605nm) to resorufin (pink, ∼λ570nm) dye. The reaction was monitored by measuring the fluorescence intensity at λ660nm for resorufin, absorbance ratio (λ570nm/λ605nm), and change in color (blue to pink). The detection approach could be customized to a spectrophotometer-based method and an instrument-free device. For both the approaches, the biomarkers were captured from the serum samples with the help of aptamer-coated magnetic beads prior to the analysis to exclude potential interferences from the serum. In the instrument-free device, a medical syringe (5 mL) prefabricated with a magnet was used for in situ separation of the enzyme-captured beads from the reaction supernatant. The converted dye in the supernatant was then efficiently adsorbed over a DEAE cellulose-treated paper wick assembled in the syringe hose. The biomarkers could be detected by both qualitative and quantitative format following the color and pixel intensity, respectively, developed on the paper surface. The developed method and technique offered detection of the biomarkers within a clinically relevant dynamic range, with the limit of detection values in the picomolar level. Flexible detection capability, low cost, interference-free detections, and portable nature (for instrument-free devices) are the major advantages offered by the developed approaches.


Asunto(s)
Aptámeros de Nucleótidos/química , Biomarcadores/análisis , Colorantes Fluorescentes/química , Glutamato Deshidrogenasa/análisis , L-Lactato Deshidrogenasa/análisis , Malaria Falciparum/diagnóstico , Plasmodium falciparum/enzimología , Técnicas Biosensibles , Pruebas Diagnósticas de Rutina/métodos , Humanos , Malaria Falciparum/parasitología , Plasmodium falciparum/aislamiento & purificación
16.
Biosens Bioelectron ; 123: 30-35, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30308419

RESUMEN

There has been a continuous strive to develop portable, stable, sensitive and low cost detection system for malaria to meet the demand of effective screening actions in developing countries where the disease is most endemic. Herein, we report an aptamer-based field effect transistor (aptaFET) biosensor, developed by using an extended gate field effect transistor with inter-digitated gold microelectrodes (IDµE) for the detection of the malaria biomarker Plasmodium falciparum glutamate dehydrogenase (PfGDH) in serum samples. A 90 mer long ssDNA aptamer (NG3) selective to PfGDH was used in the aptaFET to capture the target protein. The intrinsic surface net charge of the captured protein led to change in gate potential of the aptaFET device, which could be correlated to the concentration of the protein. This biosensor exhibited a sensitive response in broad dynamic range of 100 fM -10 nM with limits of detection of 16.7 pM and 48.6 pM in spiked buffer and serum samples, respectively. The high selectivity of the biosensor for PfGDH was verified by testing relevant analogous human and parasitic proteins on the device. Overall, the results validated the application potential of the developed aptaFET for diagnosis of both symptomatic and asymptomatic malaria.


Asunto(s)
Técnicas Biosensibles , Glutamato Deshidrogenasa/aislamiento & purificación , Malaria/sangre , Plasmodium falciparum/enzimología , Aptámeros de Nucleótidos/química , ADN de Cadena Simple/química , Glutamato Deshidrogenasa/sangre , Glutamato Deshidrogenasa/química , Oro/química , Humanos , Límite de Detección , Malaria/parasitología , Plasmodium falciparum/patogenicidad
17.
J Pharm Biomed Anal ; 162: 272-285, 2019 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-30273817

RESUMEN

The ever-increasing demand for a sensitive, rapid and reliable method for determination of serum bilirubin level has been inciting the interest of the researchers to develop new methods for both laboratory set up and point of care applications. These efforts embrace measurement of different forms of bilirubin, such as, unconjugated (free and albumin bound) bilirubin, conjugated (direct) bilirubin, and total (both conjugated and unconjugated) bilirubin in the serum that may provide critical information useful for diagnosis of many diseases and metabolic disorders. Herein, an effort has been made to provide a broad overview on the subject starting from the conventional spectroscopy based analytical methods widely practiced in the laboratory setup along with the sophisticated instrument based sensitive methods suitable for determination of different forms of bilirubin to various portable low cost systems applicable in point of care (POC) settings. In all these discussions emphasis is given on the novel methods and techniques bearing potential to measure the bilirubin level in biological samples reliably with less technical complexity and cost. We expect that this review will serve as a ready reference for the researchers and clinical professionals working on the subject and allied fields.


Asunto(s)
Bilirrubina/sangre , Análisis Químico de la Sangre/métodos , Ictericia Neonatal/diagnóstico , Animales , Biomarcadores/sangre , Análisis Químico de la Sangre/instrumentación , Humanos , Recién Nacido , Ictericia Neonatal/sangre , Ictericia Neonatal/terapia , Valor Predictivo de las Pruebas , Pronóstico , Reproducibilidad de los Resultados
18.
Biosens Bioelectron ; 119: 94-102, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30103159

RESUMEN

Combined power generation and waste degradation through microbial fuel cell (MFC) technology is emerging as an attractive solution for controlling pollution in water bodies. Cyanobacteria as fuel cell catalysts for such shared energy activities are not well studied even though these possess robust metabolic systems supporting exo-electrogenicity, biodegradation of toxic compounds, and their survival under wide environmental conditions. Herein, a dual chambered (50 ml each) MFC assembled with Synechococcus sp. based bioanode and abiotic cathode for simultaneous power generation and Mordant orange dye degradation is reported. The anode was prepared by encrusting chemically synthesised magnetic nanoparticle (MNP) of size 8.4 ±â€¯0.2 nm with magnetization of 69 emu g-1on Toray carbon paper (TCP). The MNPs were encapsulated with aniline and pyrrole composite polymers to facilitate biofilm formation and cellular electron flow to the anode as confirmed by advance microscopic and voltametric techniques, respectively. The MFC with the dye mixed acetate produced current of 14.04 ±â€¯5.5 A m-3 with a maximum power density of 4.9 ±â€¯0.5 W m-3 (at cell voltage of 0.494 ±â€¯0.05 V), which was 18% higher than the control (without dye). The MFC produced a high OCP of 0.949 ±â€¯0.07 V and offered to decolorize 68.5% and degrade 89% of the dye following 216 h of its operation as confirmed by photometry (λ385 nm) and LC-MS/MS analyses, respectively. The efficient dye degradation is attributed to the bioanode for secreting high level of reactive oxygen species. The composite polymer coated MNPs anode with cyanobacterial biofilm is therefore, a highly efficient construct for enhanced azo dye degradation and associated power generation in a MFC system.


Asunto(s)
Fuentes de Energía Bioeléctrica , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Nanopartículas de Magnetita/química , Polímeros/química , Colorantes/química , Electrodos
19.
Biosens Bioelectron ; 117: 246-252, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29909195

RESUMEN

A capacitive aptasensor for detecting the malaria biomarker, Plasmodium falciparum glutamate dehydrogenase (PfGDH), directly in human serum samples developed. A thiolated ssDNA aptamer (NG3) that binds specifically to PfGDH antigen with high affinity (Kd= 79 nM) was used to develop the aptasensor. The aptasensor produced capacitance response at an optimized frequency of 2 Hz in a non-Faradaic electrochemical impedance based signal transduction platform. The aptasensor exhibited a wide dynamic range of 100 fM-100 nM with a limits of detection of 0.77 pM in serum samples. The interference from other predominant malarial biomarkers, namely, Plasmodium falciparum -lactate dehydrogenase and -histidine rich protein-II on the aptasensor was negligible. This PfGDH aptasensor with highly sensitive and label free detection capability has great application potential for diagnosis of asymptotic malaria and monitoring the regression of malaria during treatment regime with antimalarial drugs.


Asunto(s)
Antígenos de Protozoos/metabolismo , Técnicas Biosensibles/métodos , Técnicas Electroquímicas , Glutamato Deshidrogenasa/sangre , Malaria/diagnóstico , Antígenos de Protozoos/sangre , Aptámeros de Nucleótidos/metabolismo , Glutamato Deshidrogenasa/metabolismo , Humanos , Límite de Detección , Malaria/sangre , Plasmodium falciparum/enzimología
20.
ACS Appl Mater Interfaces ; 10(22): 18630-18640, 2018 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-29756453

RESUMEN

The biosensing application of microbial fuel cell (MFC) is hampered by its long response time, poor selectivity, and technical difficulty in developing portable devices. Herein, a novel signal form for rapid detection of ethanol was generated in a photosynthetic MFC (PMFC). First, a dual chambered (100 mL each) PMFC was fabricated by using cyanobacteria-based anode and abiotic cathode, and its performance was examined for detection of alcohols. A graphene-based nanobiocomposite matrix was layered over graphite anode to support cyanobacterial biofilm growth and to facilitate electron transfer. Injection of alcohols into the anodic chamber caused a transient potential burst of the PMFC within 60 s (load 1000 Ω), and the magnitude of potential could be correlated to the ethanol concentrations in the range 0.001-20% with a limit of detection (LOD) of 0.13% ( R2 = 0.96). The device exhibited higher selectivity toward ethanol than methanol as discerned from the corresponding cell-alcohol interaction constant ( Ki) of 780 and 1250 mM. The concept was then translated to a paper-based PMFC (p-PMFC) (size ∼20 cm2) wherein, the cells were merely immobilized over the anode. The device with a shelf life of ∼3 months detected ethanol within 10 s with a dynamic range of 0.005-10% and LOD of 0.02% ( R2 = 0.99). The fast response time was attributed to the higher wettability of ethanol on the immobilized cell surface as validated by the contact angle data. Alcohols degraded the cell membrane on the order of ethanol > methanol, enhanced the redox current of the membrane-bound electron carrier proteins, and pushed the anodic band gap toward more negative value. The consequence was the potential burst, the magnitude of which was correlated to the ethanol concentrations. This novel approach has a great application potential for selective, sensitive, rapid, and portable detection of ethanol.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA