Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 309(Pt 2): 136635, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36183882

RESUMEN

Over the past decades, rapid industrialization along with the overutilization of organic pollutants/pesticides has altered the environmental circumstances. Moreover, various anthropogenic, xenobiotics and natural activities also affected plants, soil, and human health, in both direct and indirect ways. To counter this, several conventional methods are currently practiced, but are uneconomical, noxious, and is yet inefficient for large-scale application. Plant-microbe interactions are mediated naturally in an ecosystem and are practiced in several areas. Plant growth promoting rhizobacteria (PGPR) possess certain attributes affecting plant and soil consequently performing decontamination activity via a direct and indirect mechanism. PGPR also harbors indispensable genes stimulating the mineralization of several organic and inorganic compounds. This makes microbes potential candidates for contributing to sustainably remediating the harmful pesticide contaminants. There is a limited piece of information about the plant-microbe interaction pertaining predict and understand the overall interaction concerning a sustainable environment. Therefore, this review focuses on the plant-microbe interaction in the rhizosphere and inside the plant's tissues, along with the utilization augmenting the crop productivity, reduction in plant stress along with decontamination of pesticides/organic pollutants in soil for sustainable environmental management.


Asunto(s)
Contaminantes Ambientales , Plaguicidas , Humanos , Microbiología del Suelo , Ecosistema , Xenobióticos , Rizosfera , Suelo , Plantas/microbiología
2.
Artículo en Inglés | MEDLINE | ID: mdl-33865544

RESUMEN

Quantum Dots (QDs), are considered as promising tools for biomedical applications. They have potential applications in agricultural industries, novel pesticide formulations, use in bio-labels and devices to aid genetic manipulation and post-harvest management. Since interactions with higher plants are of important environmental and ecological concern we investigated the cytotoxicity and genotoxicity of CdSe QDs in a model plant (Allium cepa) and established relationships between QDs genotoxic activity and oxidative stress. Allium cepa bulbs with intact roots were exposed to three concentrations of CdSe QDs (12.5, 25 and 50 nM). Cell viability and mitotic frequencies was measured for cytotoxicity, and to assess the genotoxicity DNA lesions, chromosome aberrations and micronuclei were evaluated. We report that QDs exerted significant genotoxic effects, associated with oxidative stress. This could be correlated with the retention of Cd in Allium roots as a dose-dependent increase with the highest uptake at 50 nM of CdSe QD. Oxidative stress induced by CdSe QD treatment activated both, antioxidant (SOD, CAT) scavengers and antioxidant (GPOD, GSH) enzymes. Concentrations as low as 25 nM CdSe QDs were cytotoxic and 50 nM CdSe QDs was found to be genotoxic to the plant. These findings enable to determine the concentrations to be used when practical applications using nanodevices of this type on plants are being considered.


Asunto(s)
Compuestos de Cadmio/toxicidad , Cebollas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Puntos Cuánticos/toxicidad , Compuestos de Selenio/toxicidad , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Ensayo Cometa , Daño del ADN , Peroxidación de Lípido/efectos de los fármacos , Pruebas de Micronúcleos , Pruebas de Mutagenicidad , Cebollas/genética , Cebollas/crecimiento & desarrollo , Cebollas/metabolismo , Estrés Oxidativo/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo
3.
Heliyon ; 5(5): e01768, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31193405

RESUMEN

Ziziphus jujuba Mill. fruits are nutritionally rich and have a broad spectrum of health benefits. In this work we hypothesized that this natural product rich in polyphenols might protect humans against DNA damage and its consequences. This has led to our investigation to find out if the fruit extract showed an ability to decrease the frequency of DNA damage (antigenotoxicity) induced by two known genotoxins namely an alkylating agent methyl methane sulphonate (MMS) and a reactive oxygen species (ROS) inducer hydrogen peroxide (H2O2). Human lymphocytes were incubated with the Ziziphus fruit ethanol extracts (ZFE) or betulinic acid (BA) followed by an exposure to either 50 µM of MMS or 250 µM of H2O2. Results suggest that ZFE (250, 500, 1000 µg/ml) and BA (10, 20, 40 µg/ml) were able to inhibit the DNA damaging effect caused by MMS and H2O2 indicative of their protection against the genotoxin. This could be attributed to the interactions of the phenolics, flavonoid and BA present in the fruits. Additional in vivo experiments were carried since BA is an important phytochemical detected in ample amounts in the fruit extract. Mice were primed with BA (2.5, 5.0 and 10 mg/kg body weight) for a period of 6 days. The animals were injected with MMS (10 mg/kg body weight) 24 h later and sacrificed. The genotoxic activity of MMS was inhibited in a dose - related manner by BA. BA reduced the frequency of MMS - induced DNA damage in liver, kidney and bone marrow cells of mice thereby exhibiting its antigenotoxic properties. It could also reduce total glutathione level, lipid peroxidation and hydrogen peroxide content in liver cells of mice through the up-regulation of antioxidant enzymes. Therefore taking into account the antioxidant and antigenotoxic properties, the consumption of the Ziziphus fruit should be more popularized worldwide.

4.
Chemosphere ; 203: 307-317, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29626808

RESUMEN

The aim of this study was to assess the biomarkers of oxidative stress [reduced glutathione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione reductase (GR), aldehyde dehydrogenase (ALDH) and lipid peroxidation (LPO)] in earthworms of different ecological categories [epigeic Eisenia fetida (E. fetida) and anecic Eutyphoeus waltoni (E. waltoni)] exposed to cadmium (Cd)-polluted soil (30, 60 and 120 mg kg-1) for 28 days. Cd accumulation in earthworms increased significantly with increasing exposure dose and duration. However, E. fetida showed a relatively higher level of Cd accumulation until day 21; thereafter, depletion in the Cd level was recorded for the highest exposure dose. In E. waltoni, the detoxification enzymes and GSH level increased significantly with increasing exposure dose and Cd accumulation for 14 days (acute phase). In contrast, in E. fetida, acute exposure to Cd increased detoxification enzymes with decrease in GSH levels. For both species, sub-chronic exposures (28 days) increased lipid peroxidation with decrease in detoxification enzymes. GPx and ALDH responses of Cd-exposed earthworms showed a similar trend. Thus, these enzymes can be used as general biomarkers in these two species. The consistent variations in GST, GPx and ALDH activities suggest that E. waltoni may be used as a bioindicator species; this further signifies the use of endemic earthworms as a bioindicator to assess the risk of soil contamination. The present investigation indicates that Cd accumulation and biomarker responses in earthworms depend on dose and duration of exposure and on the concerned species.


Asunto(s)
Cadmio/toxicidad , Oligoquetos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Animales , Biomarcadores/metabolismo , Catalasa/metabolismo , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión Reductasa/metabolismo , Glutatión Transferasa/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Oligoquetos/clasificación , Suelo/química , Superóxido Dismutasa/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-29555058

RESUMEN

Betulinic acid (BA) is a naturally occurring terpenoid found principally in the bark of birch trees as well as in numerous other plants. BA is reported to inhibit cancer progression and induce apoptosis in multiple tumor types. In the present study we have investigated the cytotoxicity and potential genotoxicity of BA in SiHa cells. The cell viability was measured by using MTT assay and the morphological changes, DNA damage, changes in cell cycle and mitochondrial membrane potential (MMP) were used for the assessment of apoptosis. BA was shown to destroy SiHa cells preferentially in a concentration dependent manner with a 50% inhibition of the cells at 39.83 µg/ml. The growth inhibition of the cells by BA was coupled with DNA strand breaks, morphological changes, disruption of MMP, reactive oxygen species (ROS) generation and the cell arrest at G0/G1 stage of cell cycle. BA induced apoptosis in SiHa cells was confirmed by positive Annexin V FITC-PI staining. Our results indicate that BA effectively induced DNA damage and apoptosis in SiHa cells. The mechanism of apoptosis was caspase independent and through mitochondrial pathways.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Triterpenos/farmacología , Caspasa 3/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Pruebas de Mutagenicidad , Triterpenos Pentacíclicos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/patología , Ácido Betulínico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA